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Sociality is a defining feature of the human experience: We rely on others to ensure 
survival and cooperate in complex social networks to thrive. Are there brain mecha-
nisms that help ensure we quickly learn about our social world to optimally navigate 
it? We tested whether portions of the brain’s default network engage “by default” to 
quickly prioritize social learning during the memory consolidation process. To test this 
possibility, participants underwent functional MRI (fMRI) while viewing scenes from 
the documentary film, Samsara. This film shows footage of real people and places from 
around the world. We normed the footage to select scenes that differed along the dimen-
sion of sociality, while matched on valence, arousal, interestingness, and familiarity. 
During fMRI, participants watched the “social” and “nonsocial” scenes, completed a 
rest scan, and a surprise recognition memory test. Participants showed superior social 
(vs. nonsocial) memory performance, and the social memory advantage was associ-
ated with neural pattern reinstatement during rest in the dorsomedial prefrontal cortex 
(DMPFC), a key node of the default network. Moreover, it was during early rest that 
DMPFC social pattern reinstatement was greatest and predicted subsequent social mem-
ory performance most strongly, consistent with the “prioritization” account. Results 
simultaneously update 1) theories of memory consolidation, which have not addressed 
how social information may be prioritized in the learning process, and 2) understanding 
of default network function, which remains to be fully characterized. More broadly, 
the results underscore the inherent human drive to understand our vastly social world.

social cognition | default network | memory | DMPFC | fMRI

As we move through everyday life, we come across an abundance of information. Just as 
an example, imagine walking through your favorite city. At once, you are bombarded with 
signs, shops, and people interacting in all kinds of ways. We continuously perceive far 
more than we could possibly remember (1–3). Some experiences stick with us, and others 
are forgotten (4). Is certain information from our seemingly seamless encoding prioritized 
in memory, and if so, how?

One possibility is that social information may be prioritized in memory. Consistent 
with prior social psychology research, here “social information” refers to data about agents 
conveying a mind and the thoughts and feelings we need to infer to comprehend it (5–7). 
Given that primates rely on conspecifics to ensure survival (8–11), social information is 
highly valuable (12), which should amplify its memorability (13–15). There is also evi-
dence that social content tends to be easily learned and retrieved (16, 17). For instance, 
the same stimulus is more memorable if participants attend to its social (vs. nonsocial) 
aspects during encoding (16, 18). Past social stressors (e.g., a romantic break- up) are also 
more easily reexperienced than past nonsocial stressors (e.g., a physical injury), even when 
the events are matched on emotional intensity at the time of the event (19). Social infor-
mation can even be used to potentiate reinforcement learning as early in development as 
infancy (17). Collectively, psychological data point to the possibility that social information 
carries a powerful memorial glue.

If social information is privileged in memory, how might the brain prioritize it during 
the learning process? An answer to this question may stem from two observations. First, 
the brain region most reliably associated with social information processing, the dorso-
medial prefrontal cortex (DMPFC; 20–23), is also part of the brain’s default network, 
known to engage quickly by default during rest (24–26). More specifically, the default 
network shows strong, endogenous engagement during rest. In fact, this network shows 
greater activation during rest periods relative to many cognitive tasks, which is why it has 
been termed the “default network” or “default mode network” (24–26). Second, rest is a 
time when new information is committed to memory (i.e., consolidated; 27–29). The 
tendency for the human brain to “default” (i.e., show strong endogenous activation) to 
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the DMPFC as soon as our mind is free of external demands may 
therefore bias us toward social memory consolidation during rest.

Although memory consolidation often operates on long timescales 
(30)—for example, over a night of sleep (31, 32)—prior work has 
shown that neural responses directly after encoding make important 
contributions to the memory consolidation process (33, 34). On the 
topic of memory “prioritization,” prior work shows that some stimuli 
may be prioritized over others in the consolidation process that 
occurs directly following encoding (35). On the topic of social infor-
mation processing, prior research indicates that higher spontaneous 
DMPFC activity before a stimulus predicts faster subsequent social 
information processing for the immediately following stimulus (36, 
37). In other words, when endogenous DMPFC activity is strong 
during brief rest, it accelerates social cognition. Here, we examined 
whether endogenous DMPFC processes directly after encoding 
social information prioritize its consolidation, perhaps by also help-
ing it happen relatively quickly.

Consistent with this possibility, past work implicates the DMPFC 
in social memory encoding and retrieval (18, 23, 38), and the 
DMPFC may play a general role in social learning during rest (39, 
40). For example, the DMPFC increases functional connectivity 
with other portions of the default network after encoding new social 
information, and this increased connectivity predicts social (but not 
nonsocial) subsequent memory performance (39, 40). Critically, 
however, past work examining social consolidation during rest fully 
separates social encoding from nonsocial encoding to isolate which 
brain regions consolidate the different information during rest. As a 
result, it is impossible to know whether social consolidation is “pri-
oritized” at rest by the DMPFC based on prior research; a claim for 
prioritization would require evidence that when presented with social 
and nonsocial information during the same encoding session, the 
DMPFC prefers to consolidate the social information during sub-
sequent rest and possibly does so more quickly than brain regions 
outside of the default network consolidating other forms of infor-
mation. Establishing the prioritization of social consolidation would 
update existing theories of learning and memory, which to date have 
not considered this possibility. This gap is surprising, given that the-
oretical accounts of memory formation suggest that goal- relevant 
content may be prioritized during consolidation (41) and that 
humans have a strong, endogenous goal to feel connected to their 
social world (42).

The hypothesis driving the present study is that social informa-
tion is prioritized during consolidation at rest in the DMPFC. 
Strong evidence for this possibility requires anticipating and 
thwarting two potential confounds. First, social information is 

often conflated with a number of dimensions known to enhance 
memory: valence, arousal, interestingness, and familiarity (43–45). 
If we found that the DMPFC consolidated social memory during 
early rest, it would be hard to know whether it is the “socialness” 
of the information encoded (i.e., the extent to which it pertained 
to people) that drove prioritization vs. the other dimensions with 
which socialness tends to covary. Second, to best approximate 
real- world social learning, it is important to use encoding stimuli 
that are as naturalistic as possible, yet a great deal of naturalistic 
social stimuli used in neuroscience research take the form of a 
narrative story (46). Many naturalistic approaches to investigating 
the role of the default network in social cognition involve televi-
sion dramas, movies, and podcasts (47–51). However, the narra-
tive plot of these stories creates a confound for the present 
hypotheses. For example, imagine participants encoded a story 
while undergoing fMRI (functional MRI), and it was found that 
they had better memory for the social (vs. nonsocial) information 
in the story and that the DMPFC prioritized social consolidation 
at rest. In this scenario, it would be difficult to determine whether 
the social memory advantage was due to the prioritization of social 
learning at rest broadly speaking or whether the plot of the story 
creates an organizational structure for social information (but not 
nonsocial information), which could incidentally improve and 
prioritize social memory.

To rule out these confounds, we presented participants with foot-
age from the documentary film, Samsara. This documentary was 
intentionally developed to have no narrative or plot and instead 
portrays footage of real people, places, and objects from around the 
world. Scenes from the documentary were normed by independent 
raters on valence, arousal, interestingness, familiarity, and socialness. 
This allowed us to select a subset of video clips that varied on the 
dimension of sociality, while being matched on the other dimensions. 
With this paradigm in hand, we next had a new sample of partici-
pants complete fMRI while they encoded the social and nonsocial 
video clips in a fully intermixed fashion, completed a rest scan, and 
a surprise memory test for the footage (Fig. 1A).

If the social prioritization account is correct, we would expect 
to see the following patterns in our data. First, participants should 
show better memory performance for the social vs. nonsocial stim-
uli. Second, we should see evidence that the DMPFC preferen-
tially consolidates the social information encoded (but not 
nonsocial information encoded), and this consolidation may occur 
during early stages of rest. This would be consistent with the idea 
that our tendency to default to the DMPFC as soon as we rest 
(i.e., show strong endogenous activation) biases the brain toward 

A B

Fig. 1.   (A) Experimental paradigm. Participants encode social and nonsocial video clips from Samsara in a randomized order and undergo a subsequent rest 
scan. Next, participants complete a surprise recognition memory test that includes all of the 60 videos encoded, as well as 60 lure videos that were not previously 
encoded. Social and nonsocial videos are matched on valence, arousal, interestingness, and familiarity and differ on the dimension of sociality: the extent to which 
they have to do with people. (B) Memory performance. Participants demonstrated better social vs. nonsocial memory performance. Error bars reflect 95% CIs.D
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social memory consolidation. We used a neural pattern reinstate-
ment approach to test this hypothesis (33, 35). This approach tests 
whether reengaging multivariate patterns from encoding during 
subsequent rest predicts memory performance (35). The reinstate-
ment approach is conceptually similar to the idea of “replay” dur-
ing rest from the rodent literature on memory consolidation 
(52–55).

To complement our hypotheses about the DMPFC in social 
consolidation, we also investigated whether pattern reinstatement 
in a prefrontal brain region traditionally associated with nonsocial 
memory—the left ventrolateral prefrontal cortex (lVLPFC; 56)—
may show evidence of neural pattern reinstatement during rest 
for the nonsocial (but not social) stimuli. Given that the lVLPFC 
is not a region that is more associated with rest relative to cognitive 
tasks, we predicted that the lVLPFC would show nonsocial rein-
statement across the rest period generally, as opposed to prioriti-
zation during early rest in particular. Finally, given that the 
hippocampus is thought to play a general role in memory consol-
idation (27, 57), we also examined whether this brain region shows 
evidence of both social and nonsocial memory consolidation dur-
ing rest.

Results

Better Memory Performance for Social (vs. Nonsocial) Videos. 
Our first prediction is that participants will show better memory 
performance on the surprise memory test for the social (vs. 

nonsocial) video clips from Samsara. The surprise memory test was 
structured such that participants were shown images from the 60 
encoded (30 social; 30 nonsocial) and 60 lure video clips (30 social; 
30 nonsocial) in a fully randomized order. The lure video clips 
were normed on valence, arousal, interestingness, and familiarity 
in the same fashion as the encoded stimuli (Methods). Consistent 
with our first prediction, participants showed superior social (vs. 
nonsocial) memory performance [t(24) = 5.06, P = 3.612e- 05; 
Fig. 1B]. We define memory performance here as the d′ memory 
score (by subtracting standardized false alarms from standardized 
hits with z- scores derived via the inverse cumulative density 
function) divided by the correct reaction time (RT) so that 
our memory performance score considers both accuracy and 
speed and because this variable showed more variability across 
participants than d′ alone. It is noteworthy that social memory 
performance remains significantly better than nonsocial memory 
performance even if we only consider d′ as our measure of accuracy 
[t(24) = 5.09, P = 3.735e- 05] or just correct RT as our measure 
of accuracy [t(24) = −2.87, P = 8.595e- 03]. Thus, the behavioral 
results robustly suggest social information is better recalled than 
nonsocial information, even when constructs often conflated with 
sociality (i.e., valence, arousal, interestingness, and familiarity) 
are held constant.

Double Dissociation for Social (DMPFC) and Nonsocial (lVLPFC) 
Consolidation Mechanisms during Rest. We created regions of 
interest (ROIs) of the DMPFC cluster observed in the contrast of 

A B

Fig. 2.   (A) ROIs predicted to show reinstatement and subsequent memory effects. DMPFC refers to the dorsomedial prefrontal cortex, which was predicted to 
show social reinstatement and subsequent social memory effects. lVLPFC refers to the left ventrolateral prefrontal cortex and was predicted to show nonsocial 
reinstatement and subsequent nonsocial memory effects. The hippocampus, given its broad role in memory, was predicted to show reinstatement and subsequent 
memory effects collapsed across social and nonsocial content. (B) Visual depiction of the reinstatement approach in which the multivariate patterns in a ROI 
during encoding are applied to each TR of the subsequent rest scan. In line with prior work (35), correlations between the encoding pattern and TR rest pattern 
that are 1.5 SDs above the mean for a given subject are considered instances of reinstatement.D
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social (vs. nonsocial) encoding and the lVLPFC cluster observed in 
the contrast of nonsocial (vs. social) encoding (Fig. 2A; see Methods 
for information on ROIs). Each subject’s multivariate pattern in the 
ROIs during social video encoding, and separately, nonsocial video 
encoding were extracted. Next, we performed the reinstatement 
analysis developed by Schapiro et al. (35; Fig. 2B). The approach, 
conceptually, is template matching: identifying instances during 
rest in which the multivariate DMPFC pattern is meaningfully 
similar to the pattern observed during encoding and linking the 
number of reinstatements to subsequent memory performance 
(see Methods for more details). The observed reinstatement events 
showed high correlations with encoding patterns (Means > 0.59; 
SDs < 0.064), which further supports and justifies counting these 
instances as reinstatement.

Consistent with the hypothesis that the DMPFC preferentially 
consolidates social information, the number of DMPFC social 
pattern reinstatements across the rest period predicted social mem-
ory performance ( �   = 0.43, P = 0.042; Fig. 3A), whereas the num-
ber of nonsocial pattern reinstatements in the DMPFC across the 
rest period was unrelated to nonsocial memory performance ( �   = 
−0.14, P = 0.505, Fig. 3A). Follow- up analyses directly comparing 
these two beta estimates showed they were significantly different 
from one another (z = 2.07, P = 0.019, one- tailed). The lVLPFC 
showed the opposite pattern of results. The number of lVLPFC 
nonsocial pattern reinstatements significantly predicted nonsocial 
memory performance ( �   = 0.42; P = 0.040; Fig. 3B), whereas the 

number of lVLPFC social pattern reinstatements was unrelated 
to social memory performance ( �   = −0.03; P = 0.880; Fig. 3B). 
Follow- up analyses directly comparing these two beta estimates 
showed they were marginally different from one another (z = 1.58, 
P = 0.057, one- tailed). It is noteworthy that, overall, there was a 
greater number of nonsocial (vs. social) DMPFC pattern rein-
statements [t(23) = −2.45, P = 0.023; mean social DMPFC = 
29.00 SD = 10.85; mean nonsocial DMPFC = 39.96 SD = 12.01], 
although as noted above and shown in Fig. 3A, the number of 
nonsocial DMPFC pattern reinstatements do not significantly 
relate to nonsocial memory performance (whereas the number of 
DMPFC social pattern reinstatements do significantly relate to 
social memory performance).

As an additional check on the robustness of these relationships, 
we ran control analyses in which we generated an encoding tem-
plate for which the beta values were randomly sampled from the 
social and nonsocial encoding templates. Thus, this template con-
sisted of a mix of partial social and nonsocial representations at 
encoding randomly spatially distributed throughout the template. 
Mixed DMPFC pattern reinstatement did not meaningfully relate 
to social memory performance ( � = 0.03, P = 0.884), nor did 
mixed lVLPFC pattern reinstatement relate to nonsocial memory 
performance ( � = 0.30, P = 0.138). Further, we ran another con-
trol analysis in which the encoding template was simply the aver-
age of both the social and nonsocial encoding templates, thus 
representing all stimuli at encoding. Again, average DMPFC 

A

B

Fig. 3.   Double dissociation for social and nonsocial memory consolidation. Panel (A) shows that DMPFC social pattern reinstatement significantly predicts 
social, but not nonsocial, memory performance. Panel (B) shows that lVLPFC nonsocial pattern reinstatement significantly predicts nonsocial, but not social, 
memory performance.D
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pattern reinstatement did not meaningfully relate to social mem-
ory ( � = 0.12, P = 0.592), nor did average lVLPFC pattern rein-
statement relate to nonsocial memory ( � = 0.16, P = 0.452). These 
analyses further support the specificity of our results to the soci-
ality of the given stimuli.

Although our hypotheses were specific to the DMPFC and 
lVLPFC, to ensure we did not miss any meaningful patterns in 
other brain regions, we ran two follow- up analyses. First, we 
assessed whether the relationship between the number of neural 
pattern reinstatements during rest and subsequent memory was 
significant in the other ROIs observed during encoding (social vs. 
nonsocial encoding: VMPFC; precuneus, left amygdala, and fusi-
form gyrus; nonsocial vs. social encoding: bilateral parahippocam-
pal place area). None of these follow- up analyses were significant 
( �’s < 0.208, P’s > 0.318), except for the lPPA showing a significant 
(and negative) nonsocial reinstatement- to- subsequent nonsocial 
memory relationship ( � = −0.54, P = 0.007). Second, given that 
it is possible regions outside of those observed during encoding 
could show evidence of reinstatement- to- subsequent memory 
effects, we next repeated our reinstatement analyses with a k = 50 
whole- brain parcellation (58). No additional brain regions showed 
support for this possibility. Collectively, these results suggest that 
the link between greater neural pattern reinstatement during rest 
and superior subsequent memory is supported by different pre-
frontal regions for social (DMPFC) and nonsocial (lVLPFC) 
memory.

The DMPFC Shows Evidence of Social Consolidation during Early 
Stages of Rest. Given that we established that DMPFC social 
pattern reinstatements relate to social (but not nonsocial) memory 
performance, while lVLPFC nonsocial pattern reinstatements 
relate to nonsocial (but not social) memory performance, we 
next sought to dig deeper into how the DMPFC may prioritize 
social learning during rest. The definition of “prioritize” is to 
treat something as more important than other things. Our next 
question was whether the brain prioritizes DMPFC social pattern 
reinstatement by doing it early in the consolidation process. 
That is, does social consolidation happen relatively quickly in 
the DMPFC? To examine this possibility, we simply divided our 
resting state scan into early (0 to 168 s), middle (168 to 336 s), 
and late (336 to 504 s) time periods and summed the number of 
DMPFC social pattern reinstatements in each time period. We 
then used a linear mixed effects model to test the within- subjects 
contrast that the number of reinstatements during the early 
portion of rest is significantly greater than the middle and late rest 
periods (i.e., 2/3early - 1/3middle - 1/3late), which was significant [t(44) 
= 3.04, P = 0.004; Fig. 4]. Moreover, the relationship between 
the number of DMPFC social pattern reinstatements and social 
memory performance is driven by early rest: When DMPFC 
social pattern reinstatement for early, middle, and late rest was 
entered as separate regressors in a model predicting social memory 
performance, only early rest significantly predicted social memory 
performance ( � = 0.61, P = 0.006). Follow- up analyses further 
confirmed this effect, showing the relationship is significant during 

the early rest period ( � = 0.58, P = 0.004) but not the middle ( � = 
0.12, P = 0.600) or late rest periods ( � = 0.19, P = 0.391, Fig. 5). 
See SI Appendix for a replication of these results at the item level, 
when only sustained reinstatement instances are counted, and 
when hits are used as the outcome variable.

The same analysis with the nonsocial DMPFC encoding tem-
plate produced null results: The number of nonsocial pattern 
reinstatements in the DMPFC was not greater during early vs. 

middle and late periods of rest [t(44) = 1.46, P = 0.152]. 
Additionally, the number of nonsocial pattern reinstatements in 
the DMPFC was unrelated to nonsocial memory performance 
during early, middle, and late rest periods ( �’s < 0.259, P’s > 
0.211).

We next ran a follow- up, exploratory analysis to further iso-
late when during early rest the DMPFC social pattern reinstate-
ments meaningfully predict social memory performance. We 
performed a sliding window analysis in which we set the window 
of time to 36 TRs. We selected this amount of time so that the 
first snapshot of time was long enough to have a reliable estimate 
of reinstatement counts and an even divisor value of the total 
number of TRs in the rest scan (504 TRs). We then shifted the 
36 TR window by 1 TR repeatedly until all TRs were examined. 
This approach demonstrated that the relationship between 
DMPFC social pattern reinstatement and social memory per-
formance is significant between the initial ~1 min, 14 s to 1 
min, 53 s of rest and again between ~2 min, 7 s to 2 min, 50 s.  
The relationship never becomes significant again later in rest 
(SI Appendix, Fig. S1). Overall, the temporal analyses add fur-
ther support for the prioritization hypothesis: It is during rel-
atively early moments of rest in which social information is 
preferentially consolidated by the DMPFC at rest.

In contrast to the DMPFC, the lVLPFC did not show evidence 
of temporal prioritization for nonsocial consolidation. There was not 
a greater number of nonsocial lVLPFC pattern reinstatements during 
early (vs. middle and late) rest periods [t(46) = 0.90, P = 0.376]. 
Moreover, the correlation between lVLPFC nonsocial pattern 
 reinstatement and nonsocial memory performance was marginal 
during all time periods (early � = 0.30, P = 0.145; middle � = 0.38, 
P = 0.065; late � = 0.31, P = 0.130), indicating the nonsocial con-
solidation relationship was not unique to early rest. In other words, 
while lVLPFC nonsocial pattern reinstatement does preferentially 
relate to nonsocial memory consolidation, it does not show evidence 
of temporal prioritization.

Fig. 4.   The DMPFC shows a greater number of social pattern reinstatements 
during early (vs. middle and late) portions of the rest scan. Error bars reflect 
95% CIs.
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The Hippocampus Plays a General Role in Memory Consolidation 
at Rest. Given its broad role in memory consolidation (59), we 
next examined the hippocampus. ROIs were created from a correct 
vs. incorrect contrast during encoding, in which clusters emerged 
in both the left and right hippocampus. A multivariate template 
pattern for correctly remembered stimuli was extracted from 
encoding data within each ROI and used for pattern reinstatement 
analysis. Consistent with previous literature (35), we found a 
marginal effect indicating that the amount of correct pattern 
reinstatement in the right hippocampus at rest negatively predicted 
overall memory performance ( � = −0.40, P = 0.061). Looking 
at each type of memory separately, we found a nonsignificant 
relationship between social correct pattern reinstatement and 
social memory performance ( � = 0.23, P = 0.295), as well as 
nonsocial correct pattern reinstatement and nonsocial memory 
performance ( � = −0.37, P = 0.087) in the right hippocampus. 
Additionally, the amount of correct pattern reinstatement was 
not greater in earlier (vs. middle and late) rest periods [t(46) = 
0.55, P = 0.582].

Mean Encoding Results. Past work has demonstrated “encoding 
and subsequent memory” effects such that greater activation during 
encoding often predicts superior subsequent memory (60–62). It is 
therefore possible that our reinstatement results are epiphenomenal, 
reflecting residual effects driven by encoding. Given this possibility, 
we sought to explore if mean, univariate activation during encoding 
of social and nonsocial stimuli meaningfully predict participants’ 
memory scores and, if yes, to delineate the ways in which brain 
activity during encoding and brain activity during postencoding 
rest uniquely contribute to participants’ memory performance. We 
found, however, that neither mean, univariate activation in the 
DMPFC in response to social stimuli predicted social memory ( � 
= 0.11, P = 0.607) nor did mean, univariate lVLPFC activation in 
response to nonsocial stimuli predict nonsocial stimuli ( � = −0.32, 
P = 0.109). We repeated this analysis examining encoding only of 
trials that were later accurately remembered and again found null 
results (DMPFC in response to social stimuli predicting social 
memory ( � = 0.11, P = 0.616) nor in the lVLPFC in response 
to nonsocial stimuli ( � = −0.31, P = 0.190)). We hypothesize 
that this difference between our results and prior work could 
be driven by the greater complexity in the stimulus set than in 
previously used paradigms and the lack of a narrative structure 
in the stimulus set in comparison to other naturalistic stimuli 
designs. Overall, these follow- up analyses further point to the 

important role of postencoding rest in memory consolidation, 
including the prioritization of social memory consolidation by 
the DMPFC.

Discussion

Humans are a highly social species and must learn from their social 
environment to succeed in everyday life (63). Yet, whether and 
how the brain may be tuned toward social learning and memory 
remains unclear. We provide evidence that the DMPFC prioritizes 
social learning via quick- acting consolidation processes during 
rest. In contrast, the lVLPFC, a region previously implicated in 
encoding and subsequent memory effects (56, 64, 65), promotes 
nonsocial learning via consolidation mechanisms at rest in a non-
prioritized fashion. Collectively, the findings suggest that social 
information may be preferentially prioritized during learning and 
update existing models of memory consolidation, which to date 
have not documented this possibility.

The findings provide key support for the suggestion that the 
human brain may be “social by default” (36, 37). This perspective 
argues that, given that the same brain regions associated with social 
inference comprise a great deal of the default network, a brain 
system characterized by activating “by default” during rest, impor-
tant social cognitive processes may occur by default during rest in 
humans to facilitate navigating social life (36, 37). Our results 
support this hypothesis by showing that the DMPFC, a key 
default network region, helps to commit social memory traces 
relatively quickly during rest. Thus, the tendency to engage the 
DMPFC by default during rest may keep the brain in a state of 
readiness to facilitate social learning and memory.

Whether such default social tuning mechanisms help ensure 
we are socially savvy vs. the possibility that social brain mecha-
nisms engage by default as a consequence of people tending to be 
very social remains to be determined. On the one hand, default 
network engagement at rest has been observed early in infant 
development (66), suggesting humans may come into the world 
with default network mechanisms in place to help ensure sociality. 
On the other hand, transitioning into contexts that amplify the 
need for social bonding and new social roles, such as the transition 
into adolescence as well as the transition to motherhood, corre-
spond with systematic changes in default network function, 
including resting state patterns (67–69). Whether such changes 
reflect purely environmental vs. biological mechanisms remains 
to be fully determined. At the very least, future work could 

Fig. 5.   The relationship between DMPFC social pattern reinstatement and subsequent social memory is driven by the early rest period.
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examine how manipulating social contact impacts default social 
learning and memory.

The DMPFC social consolidation results are consistent with 
recent arguments of adaptive memory consolidation (41), which 
suggest that postencoding consolidation processes may prioritize 
goal- relevant information. This account proposes multiple dimen-
sions that may be prioritized during consolidation, such as valence 
and arousal (41). Note that our social and nonsocial stimuli were 
matched on valence and arousal, as well as other dimensions often 
conflated with sociality: interestingness and familiarity. Thus, soci-
ality may be one dimension of many that the brain “tags” for 
adaptive memory processes.

Systems memory consolidation is often considered a lengthy 
process, occurring over a night of sleep or even over several days 
(see ref. 30 for a review). However, extensive research suggests 
that the rest period directly following encoding plays a key role 
in the consolidation process (33, 34), even if there are times when 
memory systems continue to work on the information. Indeed, 
the observation that social information is quickly reinstated by 
the DMPFC is not mutually exclusive with the observation that 
some information continues to be processed over time. Moreover, 
recent work has shown that rapid offline consolidation–in the 
first 10 s following encoding–meaningfully predicts memory per-
formance (70), further suggesting that early reactivation enhances 
consolidation.

Interestingly, the “schema assimilation model” (71) proposes 
that memory consolidation can be rapid if the newly encoded 
information aligns with preexisting schemas. Schemas refer to the 
abstract knowledge structures that have been developed over mul-
tiple encoding instances (72). Rodent work in support of the 
schema assimilation model finds that new information relevant 
to a preexisting schema is quickly consolidated in memory, 
bypasses the hippocampus, and may rely on the medial prefrontal 
cortex (71, 73). Prior work in humans finds the immediate pos-
tencoding connectivity between the hippocampus and MPFC also 
predicts the longer- term schema development in MPFC that 
occurs over the following week (74). This suggests processes that 
start during postencoding rest immediately after learning impact 
the long- term consolidation of schemas. On the topic of schemas, 
participants with preexisting, similar social schemas show similar 
neural responding in the DMPFC while viewing schema- relevant 
stimuli (49, 75). Prior work also suggests quick, spontaneous 
DMPFC activation accelerates social information processing (36, 
37). For example, greater prestimulus DMPFC activity during 
very brief rest (i.e., jittered fixation) predicts faster social decisions 
on the next experimental trial (36, 37). Taken together, these 
results suggest the endogenous accessibility of social schemas (e.g., 
abstractions of social categories, scripts, and norms) may play a 
role in facilitating the quick DMPFC social pattern reinstatement 
results observed here. This suggestion is consistent with early the-
oretical accounts of perception and cognition which argue that 
the endogenous state we are in shapes what we perceive and think 
about (76). DMPFC engagement at rest may keep the brain in a 
prepared state, with social schemas readily accessible to facilitate 
social learning and memory.

Additional research will help determine the precise aspect(s) of 
“sociality” consolidated by the DMPFC at rest. Here, the sociality 
of a stimulus was determined by independent raters’ responses to 
the question “to what extent does this video clip have to do with 
people?” Experimenters subsequently confirmed all social clips 
had at least one human present and nonsocial clips had no 
humans. While the prompt provided to the independent raters is 
concrete, multiple features may have been considered in partici-
pants’ responses to the question. On the one hand, the DMPFC 

may consolidate any information depicted of humans. Indeed, 
prior work shows that in human participants, the DMPFC is more 
active in response to scenes with humans relative to multiple other 
categories, including other nonhuman animals (77). On the other 
hand, the DMPFC may consolidate information depicting social 
interactions, broadly construed. One recent study showed partic-
ipants videos of shapes moving on a screen. The more participants 
felt confident that the shapes conveyed a social interaction (e.g., 
a big circle “bullying” a small circle), the more they showed 
DMPFC activity while observing the videos (78). It is also note-
worthy that the default network includes multiple brain regions 
in addition to the DMPFC, including the VMPFC, precuneus, 
temporoparietal junction, and superior temporal sulcus extending 
into temporal poles. It is thus possible that while the DMPFC 
prioritizes certain social information during consolidation, addi-
tional default network regions may prioritize other types of con-
tent and/or processes relevant to social life.

More broadly, findings from the current study contribute to a 
greater understanding of default network function. One current 
account of default network function proposes that the default 
network may process higher- order, internally constructed rep-
resentations (79, 80). Alternatively, to integrate findings that 
implicate the default network in social cognition, others have more 
recently proposed the default network may integrate extrinsic 
social information (e.g., witnessing someone make a social blun-
der) and intrinsic information idiosyncratic to their internal expe-
rience (e.g., remembering how you felt the last time you made a 
social blunder) to create shared social knowledge across individuals 
(e.g., “we all agree that the person we saw should feel embar-
rassed”; 81). Results from our study propose one possible mech-
anism by which the default network may integrate extrinsic social 
information and intrinsic, idiosyncratic information: via social 
cognitive consolidation functions at rest.

We also observed pattern reinstatement in the hippocampus, 
as well as lPPA, negatively correlated with overall memory perfor-
mance (collapsing across social and nonsocial stimuli) in a non-
prioritized fashion. The hippocampus finding supports the prior 
work our reinstatement approach was based on, which also found 
that hippocampal pattern reinstatement helps commit weakly 
learned information to memory (35). Specifically, Schapiro et al. 
(35) instructed participants to learn three sets of novel shapes and 
found greater hippocampal reinstatement predicted better mem-
ory for the weakly learned shapes (i.e., a negative correlation 
between reinstatement and memory performance). Similarly, 
research in rodents examining hippocampal replay finds that the 
relationship between encoding and replay is not always positively 
correlated and that hippocampal replay may serve to build rep-
resentations of the entire environment, rather than just the 
well- learned aspects (82). Given that the PPA is structurally close 
to the hippocampus, and that our nonsocial items were less 
well- remembered than the social items, this region may operate 
similarly to the hippocampus–prioritizing memory consolidation 
for weakly learned places.

One surprising result was that there were more DMPFC non-
social (vs. social) pattern reinstatements. That said, the number 
of nonsocial DMPFC reinstatements did not predict subsequent 
nonsocial memory, suggesting despite being frequently reinstated, 
this reinstatement is not functionally relevant for nonsocial mem-
ory consolidation. Although speculative, we suspect these results 
reflect the fact that social and nonsocial stimuli were observed in 
the same encoding session and were taken from the same docu-
mentary, Samsara. The documentary includes footage of people 
from 25 different countries, as well as scenic footage from those 
same 25 countries. As a result, the social clips (e.g., footage of D
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people praying) are related to nonsocial clips (e.g., footage of a 
temple). It is possible that while observing the nonsocial scenes, 
participants call to mind (through the DMPFC) related social 
clips and/or try to tie the nonsocial and social scenes together 
during encoding. Importantly though, the nonsocial memory test 
directs participants' attention toward recognizing the scene (rather 
than its link to social clips). During the recognition test, partici-
pants may therefore focus on the perceptual, nonsocial features of 
the test item, something dealt with by the lVLPFC nonsocial 
pattern reinstatements. This would explain why the number of 
DMPFC nonsocial patterns during rest is high and does not pre-
dict subsequent nonsocial memory. Consistent with this possibil-
ity, prior work has found that when nonsocial stimuli are perceived 
as reflecting social information, the DMPFC engages (78). More 
work is needed to understand whether and how the DMPFC may 
imbue social meaning onto nonsocial stimuli during memory 
consolidation.

Limitations. There are two noteworthy limitations to our study. 
First, the sample size is relatively small. The number of participants 
recruited was based on the sample size used in the prior work 
the reinstatement approach was based on (35). Future research 
on social memory consolidation in larger samples will be useful. 
Second, reinstatement was defined as the number of times the 
correlation between the encoding pattern and TR rest pattern 
is 1.5 SDs above the mean for a given subject. We used this 
approach to align with previous research (35), facilitating direct 
comparisons with prior findings. That said, there are likely other 
ways to define reinstatement–for example with the strength of 
correlation between encoding and rest TRs. Additional methods 
development may be needed to further assess the multifaceted 
nature of memory consolidation during rest.

Conclusion. In summary, we found that when left with the choice 
to consolidate social or nonsocial information, the human brain 
prioritizes consolidating social information during rest first. This 
process happens through the DMPFC, a key node of the brain’s 
default network–which gets its name from the observation that 
it activates by default whenever our mind is free from external 
demands. Our results therefore suggest that the tendency to 
default to the DMPFC may help ensure we learn new social 
information as soon as we can.

Methods

Participants. Twenty- six individuals (17 females; 9 males; mean age = 22.77, 
SD = 4.8; 65.38% White, 23.08% Asian or Pacific Islander, 7.69% Black, 3.85% 
Other; 3.85% Hispanic) were recruited for participation in the study. The full study 
protocol was approved by the Dartmouth College Institutional Review Board. All 
participants provided informed consent. Participants were awarded course credit 
or paid $20 per hour for study completion.

Stimuli. Stimuli presented at encoding consisted of 5 to 10 s video clip excerpts 
from the non- narrative, documentary film, Samsara. A total of 60 video clips were 
presented at encoding, 30 of which were social stimuli (e.g., showed footage 
of humans) and 30 of which were nonsocial stimuli (e.g., showed footage of 
locations and industrial objects).

A total of 120 stimuli were selected based on ratings from mTurk participants 
(n = 372) who previewed 389 video clips from Samsara. Participants were pre-
sented with 65 video clips and rated each clip they saw on dimensions of famil-
iarity, valence, pleasantness, excitement, and sociality. Ratings were made on a 
scale from 1 to 100 (where 1 = low familiarity, low pleasantness, low excitement, 
or negative valence and 100 = high familiarity, high pleasantness, high excite-
ment, or positive valence). Mean ratings of familiarity, valence, pleasantness, and 
excitement were not statistically significantly different across social and nonsocial 

video clips (t’s < 0.59, P’s > 0.53), but mean ratings of sociality did significantly 
differ (Mean social videos = 71.60, SD = 9.43; Mean nonsocial videos = 34.63; 
SD = 6.58; t = −28.97; P = 1.40e- 36).

As noted elsewhere in the paper, we chose stimuli from the documentary, 
Samsara, because it was intentionally developed to have no narrative, helping 
ensure observed results have more to do with sociality than narrative perception. 
As an additional assurance, we collected another sample of MTurk participants 
(N = 60), who rated the selected social and nonsocial video clips. This sample 
rated each video along two dimensions: 1) the extent to which they had to do 
with people (i.e., sociality as in the original sample of raters) and 2) the extent to 
which they conveyed a narrative. Analyses on these ratings support the idea that 
the sociality of the video clips, rather than narrative perception, discriminate the 
stimuli. First, the difference between sociality ratings for the social vs. nonsocial 
stimuli was larger than the difference between the narrative ratings [F(1, 59) = 
372.41, P < 0.001]. In fact, inspecting the mean ratings of each variable showed 
that participants perceived that the social videos had more to do with people (M 
= 62.44, SD = 14.85) than narratives [M = 19.26, SD = 20.40, t(59) = 15.63, 
P < 0.001], whereas the nonsocial videos were perceived to convey narratives 
(M = 6.34, SD = 8.08) more so than be about people [M = 2.24, SD = 4.76, 
t(59) = 4.27, P < 0.001]. Second, the social videos are perceived as significantly 
more social than the nonsocial videos when controlling for the extent to which 
they conveyed a narrative [F(1, 58) = 656.10, P < 0.001]. Third, the difference 
in sociality ratings for the two stimulus types (social vs. nonsocial) did not sig-
nificantly interact with their narrative ratings [F(1, 58) = 1.09, P = 0.302]. This 
third result indicates that the differences of socialness in the stimulus types do 
not covary with their difference in narrative perception.

Procedures. Participants completed an fMRI scanning session consisting of a 
structural anatomical scan, two encoding scans, a postencoding rest scan, and 
subsequently, a surprise memory test.

Encoding. To mimic the way we simultaneously encounter social and nonsocial 
information in everyday life, at encoding, social and nonsocial video clips were 
randomly presented, as opposed to being blocked. Jittered fixation occurred after 
each video clip [mean interstimulus interval (ISI) = 3.00 s; SD = 0.825 s]. Each 
participant completed two encoding functional runs lasting 11 min.

Resting State. Next, participants completed a resting state scan. At rest, partic-
ipants were instructed to think about what they wanted and stay awake. Based 
on prior research examining consolidation during rest, each rest scan lasted  
8.4 min (39, 83).

Memory Test. After the postencoding resting state scan, participants completed a 
surprise memory test where they indicated if the image on the screen was shown 
to them at encoding by selecting “Yes,” “No,” or “I don’t know.” Participants had up 
to 6 s to respond and were presented with 120 images of 60 social and 60 nonso-
cial stimuli. The test was made up of 60 true images shown at encoding, and 60 
lure images taken from video clips of documentary film, Samsara, but not shown 
during the encoding phase. Stimulus images were randomly presented across par-
ticipants. Our memory performance variable takes into account both accuracy and 
speed. Specifically, we calculated the d′ memory score by subtracting standardized 
false alarms from standardized hits with z- scores derived via the inverse cumulative 
density function. This value was then divided by the speed (i.e., RT) with which it took 
participants to answer accurately (i.e., d′/correct RT). The d′/correct RT scores were 
linked to neural reinstatement because 1) they take both accuracy and speed into 
account and 2) they demonstrated more variability across participants than d′ alone. 
As an additional step to assess the robustness of our memory results, we examined 
whether there were systematic differences in hit and false alarm rates between social 
and nonsocial stimuli, as well as whether our reinstatement- to- subsequent memory 
results replicate when hits are considered the outcome variable. These results are 
reported in SI Appendix, though briefly, the results indicate that our memory findings 
are not simply due to differences in stimulus discriminability and the brain- behavior 
findings persist when hits are examined.

fMRI Data Acquisition. Brain imaging was conducted at the Dartmouth 
Brain Imaging Center in Hanover, NH on a Siemens Prisma 3T scanner using 
a 32- channel head coil. Functional images were acquired with a T2*- weighted 
echo- planar imaging sequence set to the following parameters: voxel size=2.5 
x 2.5 x 2.5 mm, repetition time (TR) = 1,000 ms, echo time (TE) = 30 ms, field of D
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view (FoV) = 24 cm, slice thickness = 2.5- mm, matrix = 96 x 96, flip angle = 59°, 
multiband acceleration factor = 4. Each participant also underwent a T1- weighted 
structural image (voxel size = 0.9- mm, TR = 2,300 ms, TE = 2.32 ms, FoV = 24 
cm, slice thickness = 0.9- mm, matrix = 256 x 256, and flip angle = 8°). The 
study design consisted of an event- related randomized design determined by 
easy- optimize- x (84) to maximize detection of meaningful neural clusters from 
the linear contrasts of interest at encoding (i.e., social vs. nonsocial encoding), 
which later serve as ROIs for reinstatement analyses.

fMRI Data Preprocessing. Results included in this manuscript come from pre-
processing performed using fMRIPrep 20.2.2 (85); RRID:SCR_016216), which 
is based on Nipype 1.6.1 (86); RRID:SCR_002502). As recommended by the 
creators of fMRIprep, the preprocessing steps are reported below verbatim from 
the software output.

Anatomical Data Preprocessing. A total of 1 T1- weighted (T1w) images were 
found within the input BIDS dataset. The T1- weighted (T1w) image was corrected 
for intensity nonuniformity (INU) with N4BiasFieldCorrection (87), distributed 
with ANTs 2.3.3 (88), RRID:SCR_004757, and used as T1w- reference throughout 
the workflow. The T1w- reference was then skull- stripped with a Nipype implemen-
tation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as 
target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white mat-
ter (WM) and gray matter (GM) was performed on the brain- extracted T1w using 
fast [FSL 5.0.9, RRID:SCR_002823, (89)]. Volume- based spatial normalization to 
one standard space (MNI152NLin2009cAsym) was performed through nonlinear 
registration with antsRegistration (ANTs 2.3.3), using brain- extracted versions of 
both T1w reference and the T1w template. The following template was selected 
for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 
2009c [(90), RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym].

Functional Data Preprocessing. For each of the BOLD runs found per subject 
(across all tasks and sessions), the following preprocessing was performed. First, 
a reference volume and its skull- stripped version were generated using a custom 
methodology of fMRIPrep. Head- motion parameters with respect to the BOLD 
reference (transformation matrices, and six corresponding rotation and translation 
parameters) are estimated before any spatiotemporal filtering using mcflirt [FSL 
5.0.9, (91)]. Susceptibility distortion correction (SDC) was omitted. The BOLD time 
series (including slice- timing correction when applied) were resampled onto their 
original, native space by applying the transforms to correct for head- motion. These 
resampled BOLD time series will be referred to as preprocessed BOLD in original 
space, or just preprocessed BOLD. The BOLD reference was then coregistered to the 
T1w reference using flirt [FSL 5.0.9, (92)] with the boundary- based registration 
(93) cost function. Coregistration was configured with nine degrees of freedom 
to account for distortions remaining in the BOLD reference. Several confound-
ing time series were calculated based on the preprocessed BOLD: framewise 
displacement (FD), DVARS, and three region- wise global signals. FD was com-
puted using two formulations following Power [absolute sum of relative motions, 
(94)] and Jenkinson [relative rms displacement between affines, (91)]. FD and 
DVARS are calculated for each functional run, both using their implementations 
in Nipype [following the definitions by Power et al. (94)]. The three global signals 
are extracted within the CSF, the WM, and the whole- brain masks. Additionally, a 
set of physiological regressors were extracted to allow for component- based noise 
correction [CompCor, (95)]. Principal components are estimated after high- pass 
filtering the preprocessed BOLD time series (using a discrete cosine filter with 
128 s cutoff) for the two CompCor variants: temporal (tCompCor) and anatomical 
(aCompCor). tCompCor components are then calculated from the top 2% variable 
voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM, 
and combined CSF+WM) are generated in anatomical space. The implementa-
tion differs from that of Behzadi et al. in that instead of eroding the masks by 2 
pixels on BOLD space, the aCompCor masks are subtracted a mask of pixels that 
likely contain a volume fraction of GM. This mask is obtained by thresholding the 
corresponding partial volume map at 0.05, and it ensures components are not 
extracted from voxels containing a minimal fraction of GM. Finally, these masks 
are resampled into BOLD space and binarized by thresholding at 0.99 (as in the 
original implementation). Components are also calculated separately within the 
WM and CSF masks. For each CompCor decomposition, the k components with 
the largest singular values are retained, such that the retained components’ time 
series are sufficient to explain 50 percent of variance across the nuisance mask 

(CSF, WM, combined, or temporal). The remaining components are dropped from 
consideration. The head- motion estimates calculated in the correction step were 
also placed within the corresponding confounds file. The confound time series 
derived from head motion estimates and global signals were expanded with the 
inclusion of temporal derivatives and quadratic terms for each (96). Frames that 
exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated 
as motion outliers. The BOLD time series were resampled into standard space, 
generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, 
a reference volume and its skull- stripped version were generated using a cus-
tom methodology of fMRIPrep. All resamplings can be performed with a single 
interpolation step by composing all the pertinent transformations (i.e., head- 
motion transform matrices, SDC when available, and coregistrations to anatomical 
and output spaces). Gridded (volumetric) resamplings were performed using 
antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize 
the smoothing effects of other kernels (97). Nongridded (surface) resamplings 
were performed using mri_vol2surf (FreeSurfer).

General Linear Model. Neuroimaging data were analyzed using NLTools (98). 
The data were spatially smoothed using a 6- mm full- width half- maximum 3D 
Gaussian kernel. Nuisance variables included in the model consisted of 6 head 
motion parameters (x, y, and z directions of roll, pitch, and yaw rotations), a high- 
pass filter (duration 128 s), linear and quadratic filters, and run regressors. TRs in 
non- steady- state and TRs with spikes in global signal and average frame differ-
ence greater than 3 SDs were included as individual regressors.

For functional data obtained during encoding scans, a general linear model 
was created for each participant to estimate task- induced activation during 
social and nonsocial stimulus presentation. Stimulus presentation regressors 
were convolved with a Glover hemodynamic response function. For functional 
data obtained during resting state scans, an additional intercept regressor was 
included to remove global signal (94). All resting state analyses were performed 
on the remaining residual time series.

First- level, univariate contrasts comparing social and nonsocial stimuli at 
encoding were generated for each subject from the model- estimated data. 
Second- level analyses were subsequently performed to derive ROIs. These group 
contrasts were statistically thresholded at P < 0.001 with a cluster extent of 200 
voxels. The social vs. nonsocial contrast revealed significant clusters of activity in 
the DMPFC (x = 12 y = 52 z = 40, k = 501), VMPFC (x = 4 y = 52 z = −18, k = 
517), precuneus (x = 6 y = −60 z = 34, k = 313), left amygdala (x = −20 y = 
−8 z = −14, k = 16,433), and left fusiform gyrus (x = −44 y = −50 z = −20, k 
= 4,572). The nonsocial vs. social contrast revealed significant clusters of activity 
in bilateral parahippocampal place area (x = −34 y = −48 z = −2, k = 1,243; x = 
32 y = −40 z = −4, k = 1,149) and left VLPFC (x = −34 y = 48 z = 26, k = 262).

An additional first- level, univariate contrast comparing activity during encod-
ing of trials that were later correctly vs. incorrectly remembered was generated for 
each subject. Second- level analyses were statistically thresholded at P < 0.001 
with a cluster extent of 30 voxels, given the relatively small anatomical size of the 
hippocampus and to help ensure we had a hippocampal cluster to investigate. The 
correct vs. incorrect contrast revealed significant clusters of activity in the bilateral 
hippocampus (x = −20 y = −8 z = −16, k = 36; x = 20 y = −6 z = −18, k = 
38) and right parahippocampal gyrus (x = 32 y = −76 z = −22, k = 1,504).

We also ran first- level analyses to derive mean univariate activity during 
social encoding (vs. implicit baseline) and separately, nonsocial encoding (vs. 
implicit baseline). This allowed us to perform “encoding- and- subsequent 
memory” analyses. Specifically, we assessed whether univariate activity in 
the DMPFC during social encoding predicted subsequent social memory per-
formance, as well as whether univariate activity in the lVLPFC during nonsocial 
encoding predicted subsequent nonsocial memory performance. We also per-
formed a first- level analysis to assess whether mean univariate activity during 
social and nonsocial encoding for stimuli that were later correctly remembered 
related to subsequent memory performance. These were follow- up analyses 
to assess the extent to which effects observed in these two regions during 
postencoding rest were influenced by the overall level of activity in these 
regions during encoding.

Follow- up whole- brain analyses were performed using the k = 50 whole- 
brain parcellation that used k- means clustering to isolate meta- analytic coac-
tivations from Neurosynth (99). This parcellation was chosen to help ensure 
that the regions selected are functionally relevant to psychological constructs. D
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Whole- brain reinstatement analyses were multiple comparisons corrected using 
a Bonferroni- corrected P- value of 0.001.

Pattern Reinstatement. Multivariate template patterns were created using beta 
values extracted from functional ROIs identified in first- level contrasts at encoding. 
The multivariate template patterns from encoding were correlated with the multivari-
ate template pattern within the same functional ROI for each TR during postencoding 
rest (TRs = 504), generating a matrix of correlation values for each template pattern 
across the duration of rest. Consistent with the research our approach is based on 
(35), a potential reinstatement was defined as a correlation greater than 1.5 SD above 
the mean of all correlations for a given subject. The amount of correlation values that 
exceeded this threshold were summed across postencoding rest to generate a count 
metric used in subsequent analyses. Consistent with prior social consolidation work 
(39), memory performance scores and reinstatement values from the full rest periods 
were excluded if greater than 2 SDs away from the group mean. This corresponded 
with one social memory outlier, two social DMPFC outliers, one nonsocial DMPFC 
outlier, two social lVLPFC outliers, one nonsocial lVLPFC outlier, and two hippocampus 
outliers removed from their respective variables. Brain- behavior correlations reported 
in the manuscript reflect two- tailed P- values.

This study was explicitly designed to assess condition- level reinstatement. 
Thus, multivariate template patterns derived at encoding and used in subsequent 
reinstatement analysis are generated from social encoding (vs. implicit baseline, 

i.e., mean activation of all social stimuli at encoding) and nonsocial encoding 
(vs. implicit baseline; i.e., mean activation of all nonsocial stimuli at encoding) 
as opposed to individual stimuli. These condition- level representations are then 
correlated with each TR of postencoding rest to assess reinstatement related 
to subsequent memory performance. That said, we ran exploratory item- level 
reinstatement models to further probe our DMPFC findings (See SI Appendix 
for more details).

As a follow- up, we ran control analyses in which we generated an encoding 
template for which the beta values were randomly sampled from the social and 
nonsocial encoding templates. Thus, this template consisted of a mix of partial 
social and nonsocial representations at encoding randomly spatially distributed 
throughout the template. Further, we ran another control analysis in which the 
encoding template was simply the average of both the social and nonsocial 
encoding templates, thus representing all stimuli at encoding.

Data, Materials, and Software Availability. Anonymized behavioral and 
ROI data have been deposited in the Open Science Framework: https://osf.io/
dmf7k/ (100).
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