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Abstract 43 
People are remarkably self-focused, disproportionately choosing to think about 44 
themselves relative to other topics. Self-focus can be adaptive, helping individuals fulfill 45 
their needs. It can also go haywire, with maladaptive self-focus a risk and maintenance 46 
factor for internalizing disorders like depression.  Yet, the neural mechanism driving 47 
people to focus on themselves remains unknown. This gap is due to timing: while prior 48 
research measures neural activity the moment participants are instructed to self-reflect, a 49 
brain state that precedes, or nudges, the bias to spontaneously focus on the self remains 50 
undetermined. We identified a default network neural signature from pre-trial activity that 51 
predicts 1) multiple indicators of self-focus within our sample and 2) internalizing 52 
symptoms in a separate sample from the Human Connectome Project. This is the first 53 
work to “decode” the bias to focus on the self and paves the way towards stopping 54 
maladaptive self-focus in its course. 55 



 

Writer David Foster Wallace once referred to the self as “our default setting”1. 56 

Psychological data support his view. Across cultures, people disproportionately think 57 

about themselves while mind wandering2–4. They also are more likely to remember and 58 

communicate self-relevant information than information unrelated to the self5–11. Even 59 

when people try to take the perspective of someone dissimilar to themselves, much of the 60 

time they still end up projecting their own point of view12,13. While self-focus is necessary 61 

and positive in some forms—such as detecting our hunger cues or social needs—in its 62 

most pernicious forms, self-focus is a risk and maintenance factor for internalizing 63 

disorders such as depression14–19. Identifying what drives the bias towards focusing on 64 

ourselves would pave the way towards stopping maladaptive self-focus in its course, in 65 

turn preventing its negative downstream consequences. 66 

  67 

Yet, the underlying neural mechanism(s) generating the bias towards self-focus remains 68 

to be determined. This gap is due, in large part, to timing. Extensive neuroscience 69 

research on “the self” captures neural activity while participants are instructed to think 70 

about themselves20, robustly implicating the medial prefrontal cortex, Brodmann Area 10 71 

(MPFC/BA10) in active self-reflection. This area of research has been highly generative 72 

but fails to identify neural processes that set self-focus in motion. Meeting that goal would 73 

require examining neural activity before people spontaneously focus on themselves and 74 

assessing whether such neural patterns temporally predict self-focus. This alternative 75 

approach fits with predictive coding accounts of brain function, which broadly suggest 76 

endogenous, default brain states predict subsequent perception and cognition21–23. For 77 

example, pre-stimulus fusiform gyrus activity predicts which of two competing visual 78 

stimuli is perceived24 and pre-stimulus hippocampal patterns shape stimulus encoding and 79 

memory25–27. 80 

  81 

The possibility that pre-stimulus neural processes predict the bias towards self-focus is 82 

further bolstered by the fact that MPFC/BA10 is a key node of the default network, known 83 

to robustly engage “by default”, without the presence of any stimuli28. Specifically, the 84 

default network shows stronger neural activity while passively resting relative to many 85 

experimental, cognitive tasks. Indeed, many scholars have speculated that engaging 86 

MPFC/BA10, and the default network more generally, during stimulus-free rest may reflect 87 

some form of self-focus in the scanner28,29. That said, while past work has shown greater 88 

resting state functional connectivity (i.e., time-course correlations between brain regions) 89 

https://paperpile.com/c/EdFEvP/p0cNX
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between MPFC/BA10 and other default network regions correlates with self-focus30,31, the 90 

direction of this relationship is unknown. Moreover, previous work focuses on functional 91 

connectivity to investigate neural activity during rest. Yet functional connectivity is too 92 

coarse a metric to parse whether a neural signal at rest captures active self-reflection 93 

versus triggers the bias towards self-focus. 94 

  95 

We took a multipronged approach to determine the neural signature predicting the bias to 96 

focus on ourselves. First, we developed a paradigm designed to behaviorally measure the 97 

bias towards self-focus. In this paradigm, participants believed they were deciding which 98 

kinds of experimental trials they would get in a separate task that would immediately 99 

follow. The structure of the decision task was as follows: it started with a brief (~4.5 secs) 100 

pre-trial rest period followed by a trial in which participants choose if they would later like 101 

to think about themselves, a close other (i.e., nominated friend), or a well-known other 102 

(i.e., President Biden) across multiple dimensions assessed separately (i.e., personality 103 

and physical traits; social roles; preferences; past and future). Each choice was followed 104 

by an attention reorienting trial (i.e., shape matching) to help ensure participants cleared 105 

their mind before the next pre-trial rest period (see Figure 1A). Participants completed this 106 

task while undergoing functional magnetic resonance imaging (fMRI) and their behavioral 107 

responses indeed reflected a bias towards self-focus: they disproportionately choose to 108 

think about themselves (vs. the close and well-known others) and were preferentially 109 

faster to do so (see Results). 110 

  111 

Critical to the question of what may predict self-focus, we assessed neural responses to 112 

each pre-trial rest phase of this task and examined how it modulated the speed and 113 

decision to choose the self (vs. others) on the immediately following trial. To date, only 114 

one study has probed pre-stimulus neural activity in a self-reflection task, finding that, on 115 

a trial-by-trial basis, faster responses to questions assessing beliefs about one’s traits 116 

(e.g., “Am I funny?” yes/no) are preceded by stronger MPFC/BA10 activity32. This finding 117 

is consistent with the present paper’s hypothesis: it shows that “defaulting” to MPFC/BA10 118 

facilitates access to self-views. However, necessary and sufficient support for the bias 119 

towards self-focus requires that default MPFC/BA10 neural responses predict the 120 

preference to focus on the self (vs. others). To this end, we trained support vector machine 121 

(SVM) classifiers in MPFC/BA10, and the default network more generally, to determine if 122 

multivariate patterns during pre-trial rest predict the following choice to think about the self 123 

https://paperpile.com/c/EdFEvP/3b4uz+mnXiq
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(vs. others). This approach allowed us to determine neural patterns that “decode” the 124 

desire to think about the self before the decision has been made. We call this neural 125 

signature the “pre-self pattern”. 126 

  127 

We next investigated if our pre-self pattern generalizes to predict self-focus in another 128 

context—an extended resting state scan. We assessed this possibility in two ways. First, 129 

in the very beginning of our experiment, participants completed an 8-minute resting state 130 

scan and rated the extent to which they were focused on themselves, others, the past, 131 

and the future every 2 minutes of the rest period. We took the pre-self pattern identified in 132 

the pre-trial rest period from the task described above and applied it to the resting state 133 

data. Specifically, we used multivariate pattern similarity analysis to quantify the extent to 134 

which the pre-self pattern was present during each second of the two minutes preceding 135 

participants’ self-reports during the resting state scan. The approach taken here is similar 136 

to “reinstatement” analysis from the memory consolidation literature, in which researchers 137 

assess the extent to which multivariate patterns from encoding reappear during post-138 

encoding rest33,34. Here, we refer to the approach as “instatement” analysis because we 139 

are investigating if a pre-self pattern (rather than a pattern for something previously 140 

encoded) spontaneously appears during a baseline rest scan. We reasoned that if we 141 

discovered a neural signature that predicts self-focus, then the strength of its presence 142 

during extended rest should preferentially predict self-reported self-focus, too. 143 

  144 

Second, a neural signature that predicts self-focus should also temporally predict the 145 

neural signature that captures active self-reflection. That is, if the pre-self pattern nudges 146 

self-reflection, then it should nudge the neural pattern reflecting active self-reflection. To 147 

examine this, we capitalized on a separate task completed by our participants. At the end 148 

of this experiment, participants completed a traditional self-reflection task, in which they 149 

rated their own personality traits. This approach has been used numerous times in the 150 

social neuroscience literature to capture active self-reflection35–40. For each participant, we 151 

derived their multivariate pattern (in the MPFC/BA10 and default network more generally) 152 

associated with active, instructed self-reflection. We then went back to our resting state 153 

data and examined whether the strength of the pre-self pattern temporally predicted the 154 

presence of the active self-reflection pattern (and not vice versa). Such a result would be 155 

consistent with the hypothesis that the pre-self pattern predicts active self-reflection. More 156 

broadly, positive results from our multi-pronged approach would provide robust evidence 157 

https://paperpile.com/c/EdFEvP/k6NJj+ibwfs
https://paperpile.com/c/EdFEvP/SXlsw+0JErV+6zJ86+xtPK8+t5uo+Qyh1
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that we identified a neural signature that predicts multiple characterizations of self-focus 158 

(i.e., decisions, self-report, neural). 159 

  160 

Moving back to the larger clinical implications of this work, self-focused thought is a risk 161 

and maintenance factor for internalizing disorders, including depression and anxiety14–19. 162 

If we are able to identify a neural signature that allows us to better understand what nudges 163 

individuals into these maladaptive states, it would pave the way towards stopping 164 

maladaptive self-focus in its course, in turn preventing its negative downstream 165 

consequences. Additionally, if we have truly identified a neural signature, we should be 166 

able to apply it to individuals from separate datasets and see that it relates to participants’ 167 

self-focus. We thus tested whether our pre-self pattern predicts outcomes related to 168 

maladaptive self-focus in data from the Human Connectome Project. The Human 169 

Connectome Project dataset includes a resting state scan and internalizing score for each 170 

participant, which reflects symptoms like anxiety and depression that are related to self-171 

focus. An intersubject representational similarity analysis (IS-RSA41) revealed that 172 

individuals with higher internalizing scores rhythmically default to the pre-self pattern. In 173 

contrast, individuals low in internalizing do not show any systematic structure to the 174 

presence of their pre-self pattern; they move into and out of the pre-self pattern 175 

idiosyncratically. These results not only show the pre-self pattern can meaningfully predict 176 

maladaptive forms of self-focus in another sample. They further identify a novel way to 177 

think about how internalizing relates to brain function. Internalizing may be a maladaptive 178 

form of self-focus, at least in part, because individuals high on this dimension consistently 179 

return to the pre-self pattern while mind wandering, making self-focus inescapable.  180 

https://paperpile.com/c/EdFEvP/7jdE9+MAANT+OO3ng+K3bob+pjNYS+F00qM
https://paperpile.com/c/EdFEvP/unEM
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 181 

 182 
Fig. 1 A) Our main task design included 3 parts that repeated. First was a pre-trial jittered 183 

rest period (2.5–6 sec, mean = 4.5 sec); second was the choice activity where participants 184 

choose who (themselves, a designated friend, or Biden) they want to think about in a later 185 

task (5 sec); third, a shape matching task, aimed at moving participants' minds off their 186 

last choice, followed. These three parts repeated 54 times in run 1 and 54 times in run 2 187 

for a total of 108 trials. Our analysis examined neural activity during the pre-trial jittered 188 

rest in relation to the subsequent task choice and response time. B) The first fMRI run that 189 

the participants completed was an 8 minute long resting state scan. The 8 minutes were 190 

broken up into four, 2 minute long sections. After each 2 minute section, participants had 191 

32 seconds to rate the extent to which they were thinking about themselves, others, the 192 

future, and the past. These ratings were made on a continuous scale with ‘not at all’ on 193 

one end, ‘completely’ on the other end, and ‘somewhat’ in the middle of the scale. C) The 194 

final task participants completed was a typical self reflection task. In this task participants 195 
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were instructed to rate how well an adjective describes their personality in different social 196 

roles (Friend, Student, Significant Other, Son/Daughter, and Worker) on a scale from 1 to 197 

4 using button boxes. We used the Big 5 list of 100 adjectives42. The rating trials were 4 198 

seconds long and the jittered rest was 1–3 sec, mean = 2 sec. There were two runs of 101 199 

trials each, with a total of 202 trials. 200 

Results 201 
 202 
When given the choice, people prefer to think about themselves over others 203 

In our primary fMRI task, participants believed they were choosing trials that would appear 204 

in their subsequent fMRI task. Specifically, they choose if they would later like to think 205 

about themselves, a close other (i.e., nominated friend), or a well-known other (i.e., 206 

President Biden) across multiple dimensions assessed separately (i.e., personality and 207 

physical traits; social roles; preferences; past and future), with a total of 108 choices made 208 

(See Figure 1A). Participants’ decisions indicated a strong predisposition to default 209 

towards self-focus. A repeated-measures ANOVA demonstrated a main effect of choice 210 

on the number of trials selected (F(2, 62) = 29.26, p < .001). Follow-up, paired sample t-211 

tests showed participants choose to think about themselves significantly more than a 212 

designated friend (t(31) = 3.76,  p < 0.001, Cohen’s d = .67) and Biden (t(31) = 7.09, p < 213 

0.001, Cohen’s d = 1.25). There was also a main effect of choice on response time (F(2, 214 

3431.3) = 11.97, p < .001) such that participants were faster to make decisions to think 215 

about themselves in comparison to a friend (β = 0.11, standardized β = 0.02, t(3429)= 216 

4.68, p = .003) and Biden (β = 0.08, standardized β = 0.03, t(3435) = 2.93, p < 0.001). 217 

Notably, participants were also more likely to choose to think about their friend than Biden 218 

(t(31) = 4.37, p < 0.001, Cohen’s d = .77), and were faster to choose their friend over 219 

Biden (β = 0.08, standardized β = 0.03, t(3435) = 2.93, and p < 0.001). 220 

  221 

Two follow-up analyses further assessed the pervasiveness of the bias towards self-focus. 222 

One possibility is that self-focus is driven by a particular dimension assessed, rather than 223 

a generalizable preference to think about oneself. For example, perhaps the desire to think 224 

about the self is driven specifically by participants’ preference to think about their past. If 225 

so, then we would have identified a nuanced bias towards self-focus rather than a more 226 

general one. To assess this possibility, we tested whether choice preferences regarding 227 

who participants wanted to think about (self/friend/Biden) interacted with the content of the 228 

dimension considered (social roles, preferences, physical traits, personality traits, future, 229 

https://paperpile.com/c/EdFEvP/JjhPD
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and past). Choice preferences, but not reaction time, significantly interacted with 230 

dimensions (choice: F(10, 310) = 3.00, p = .001, ηp2 = 0.088; response time: F(10, 3404.2) 231 

= 1.75, p = .064, ηp2 = 0.002). Critically, subsequent t-tests revealed that there was not a 232 

dimension within self choices that was significantly different than any of the others (t’s < 233 

2.7; p’s > 0.50, bonferonni-corrected). Instead, the interaction was driven by choices for 234 

the other targets. When participants chose to later think about their friend, they were more 235 

likely to choose to think about their friend’s personality traits than social roles (t(31) = 4.20,  236 

p = 0.009, Cohen’s d = 0.87). When participants chose to think about Biden, they were 237 

more likely to choose to think about his social roles than preferences and past 238 

(tpreferences(31) = 4.00,  p = 0.017, Cohen’s d = 0.87; tpast(31) = 3.50,  p = 0.045, Cohen’s d 239 

= 0.82), and more likely to choose to think about his future than preferences (t(31) = 3.88,  240 

p = 0.023, Cohen’s d = 0.66). In other words, self-focus was not driven by a particular 241 

dimension(s), although when people preferred to think about their friend or Biden, certain 242 

dimensions were more preferred than others.  243 

  244 

Another possibility is that the bias towards self-focus only occurs initially, in the beginning 245 

of the task, but this preference dissipates over time. This would suggest that people are 246 

not overwhelmingly self-focused, rather they can correct for this bias. However, there was 247 

no significant linear trend of choosing self over the length of the entire, two-run task (β = 248 

0.04, standardized β = 0.11, t(3447) = 0.40, p = 0.69) nor for run one vs. run two (β = -249 

0.05, standardized β = 0.07, t(3447) = -0.67, p = 0.50). Similarly, there was no significant 250 

choice by run interaction (β = -0.01, standardized β = 0.07, t(3447) = -0.16, p = .87). The 251 

same analyses for the other targets (i.e., friend; Biden) indicated that choice behavior also 252 

did not change with time for decisions to think about the friend (β’s < .06; p’s > .60) or 253 

Biden (β’s < .14; p’s > .14). Collectively, the behavioral results suggest a strong, persistent 254 

predisposition to quickly choose to focus on the self (vs. others). 255 
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 256 

 257 
Fig. 2 (A) Participants choose to think about themselves significantly more than their self-258 

nominated friend (t(31) = 3.76,  p < 0.001, Cohen’s d = .67) or Biden (t(31) = 7.09, p < 259 

0.001, Cohen’s d = 1.25). (B) Participants are faster in their decisions to think about 260 

themselves in comparison to a friend (β = 0.11, standardized β = 0.02, t(3429) = 4.68, p = 261 

.003) and Biden (β = 0.08, standardized β = 0.03, t(3435) = 2.93, p < 0.001). ***indicates 262 

p < .001; **indicates p < .005. 263 

  264 

A neural signature that predicts self-focus: Evidence from the brief, pre-trial rest in 265 

the choice task 266 

  267 

Mean MPFC/BA10 Activity during Pre-Trial Rest Parametrically Modulates Decisions to 268 

Think about the Self 269 

 270 

The primary goal of the choice task was to derive a neural signature that precedes and 271 

decodes self-focus. However, we first wanted to assess if we conceptually replicate the 272 

single, previous study investigating the role of pre-stimulus responses on self-273 

processing32. Consistent with that prior work, we performed a parametric modulation 274 

analysis in which neural activity during pre-trial rest was modulated—on a trial-by-trial 275 

basis—by the speed and choice of the next trial. Note that these and all subsequent 276 

analyses are run on the residual images from the task activation models to ensure pre-277 

trial rest activity is not contaminated by task-evoked effects. Given that the previous work 278 

found the magnitude of MPFC/BA10 activity preferentially facilitates the speed with which 279 

https://paperpile.com/c/EdFEvP/OVKvX
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participants answer questions about themselves, we probed the parametric modulation 280 

analysis here in an MPFC/BA10 region-of-interest (ROI) predefined by Yeo et al.43; see 281 

Methods). Consistent with the prior work, faster decisions to choose the self (vs. friend 282 

and Biden) corresponded with greater mean activity in the MPFC/BA10 during the 283 

previous pre-trial rest period (t(31) = -2.20,  p = 0.036, Cohen’s d = -0.39). No additional 284 

clusters emerged in follow-up whole-brain parametric modulation analyses searching for 285 

brain regions whose greater activation during pre-trial rest predicted faster decisions to 286 

think about: 1) self vs other (friend and Biden), 2) friend vs. self, 3) Biden vs. self or 4) 287 

friend vs. Biden). Conceptually replicating prior work, the results indicate that faster 288 

choices to think about the self are preceded by greater mean MPFC/BA10 activity. 289 

  290 

Multivariate Neural Patterns in the Core Default Network Subsystem during Pre-Trial Rest 291 

Predict Decisions to Think about the Self 292 

 293 

Next, we returned to our primary goal – to test whether neural patterns during pre-trial rest 294 

could “decode” if participants next wanted to think about the self. In the decoding analysis 295 

presented here, we used the decision on the choice task as the outcome variable to 296 

determine if neural patterns during pre-trial rest predict the subsequent choice to think 297 

about the self. Specifically, using multi-voxel pattern analysis (MVPA) on the pre-trial rest, 298 

we trained a linear support vector machine (SVM) classifier to differentiate between 299 

subsequent self-choices vs. other-choices (friend and Biden). Friend and Biden choices 300 

were combined so there was a roughly equal number of self vs. other trial types, which 301 

helps ensure the analysis is unbiased. We first performed the analysis and validation 302 

specifically within the Yeo et al.43 MPFC/BA10 ROI. We computed prediction performance 303 

using the 6-fold balanced cross-validation procedure44,45. Specifically, we subdivided the 304 

data into 6 separate folds (5-6 participants in each group) and used all of the data except 305 

for one-fold to train the model and then tested the model using the left-out fold. We then 306 

iterated over this process for each fold and an average classification accuracy was 307 

calculated. A null distribution was computed using 10,000 permutations of 6-fold 308 

randomized SVMs and p-values were calculated to indicate statistical significance of the 309 

predictive accuracy (see Methods). 310 

  311 

The approach identified that distributed, pre-stimulus patterns in MPFC/BA10 predict the 312 

decision to choose to think about the self with 70% accuracy, p = .01. In other words, the 313 

https://paperpile.com/c/EdFEvP/JU5pj
https://paperpile.com/c/EdFEvP/JU5pj
https://paperpile.com/c/EdFEvP/EroWt+efXgz
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brain state a person enters in MPFC/BA10 as soon as their mind is free from external 314 

demands predicts whether they next want to think about themselves. But is it the only part 315 

of the brain that can do this? We next assessed if MPFC/BA10 predicted self-choices 316 

better than patterns from the entire brain. The whole brain pattern during pre-trial rest was 317 

able to predict the subsequent decision to choose the self with 77% accuracy, p = .001. 318 

The higher accuracy for whole brain classification suggests additional brain areas 319 

contribute to the bias towards self-focus. 320 

  321 

To determine which additional brain regions contribute to the bias towards self-focus, it is 322 

important to consider that MPFC/BA10 is one of multiple brain regions comprising the 323 

brain’s default network and that mental phenomena can arise from distributed patterns of 324 

neural activity across interacting brain regions46–48. Graph analytic methods indicate that 325 

the default network is comprised of three subsystems: the core subsystem (associated 326 

with self-reflection, prospection and autobiographical memory), dorsomedial subsystem 327 

(associated with social semantic knowledge and inferring mental states), and the medial 328 

temporal lobe subsystem (associated with episodic memory, simulation, and relational 329 

processing2,43,49. As alluded to in its name, the core subsystem is the primary default 330 

network subsystem, and MPFC/BA10 is a key node. Thus, while MPFC/BA10 is the region 331 

most reliably associated with self-reflection50, it is possible that distributed patterns of 332 

neural activity in the core default network subsystem, including MPFC/BA10, may 333 

contribute to the bias towards self-focus. 334 

  335 

We therefore repeated the steps for (SVM) classification on a whole-brain activation map 336 

masked by the three subsystems of the default network (core subsystem, dMPFC 337 

subsystem, and MTL subsystem) as mapped by Yeo et al.43. We found multivariate 338 

patterns in the core subsystem during pre-trial rest periods predicted the decision to 339 

choose to think about the self with 83% accuracy, p < .001. The dMPFC subsystem (48% 340 

accuracy, p = .61) and MTL subsystem (59% accuracy, p = .17) both were not able to 341 

classify results above chance. These results demonstrate that distributed patterns in the 342 

DMN core subsystem during pre-trial rest best predict the subsequent choice to think 343 

about the self. The DMN core subsystem classification accuracy is higher than the whole-344 

brain accuracy, suggesting that the whole-brain results are largely driven by the DMN core 345 

subsystem. We would expect that even though the whole-brain includes the DMN core, 346 

https://paperpile.com/c/EdFEvP/laXs+mTgt+dB0i
https://paperpile.com/c/EdFEvP/84WiG+JU5pj+FGthR
https://paperpile.com/c/EdFEvP/YMrXd
https://paperpile.com/c/EdFEvP/JU5pj
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its accuracy would be lower because of the noise created by other areas of the brain 347 

outside of the core system. 348 

  349 

We next dug another layer deeper, to understand precisely which DMN core regions 350 

besides MPFC/BA10 contribute to its classification power. We performed follow-up 351 

analyses with all of the ROI’s included in Yeo’s DMN core subsystem: right middle 352 

temporal gyrus, right superior frontal gyrus, left middle frontal gyrus with left superior 353 

frontal gyrus, left angular gyrus, right angular gyrus with right middle temporal gyrus, 354 

posterior cingulate/precuneus (PCC), and MPFC/BA10. The only classifiers that were 355 

significant with an uncorrected threshold were the PCC (69% accuracy, p = .02) in addition 356 

to the MPFC/BA10 (70% accuracy, p = .01). To determine if one region was contributing 357 

more than the other to the core subystem’s predictive power, we ran an MVPA analysis 358 

with the DMN core subsystem minus the MPFC/BA10 (73% accuracy, p = .004), the DMN 359 

core subsystem minus the PCC (73% accuracy, p = .005), the DMN core subsystem minus 360 

the MPFC/BA10 and PCC (59% accuracy, p = .17), and the MPFC/BA10 and PCC 361 

combined (72% accuracy, p = .006). We ran statistical tests on a total of 15 classifier 362 

models over the course of this analysis. When we correct for multiple comparisons only 363 

the DMN core subsystem (83% accuracy, p = .0001) and the whole brain (77% accuracy, 364 

p = .001) survive the corrected threshold (p < .05/15, or .003). These results in combination 365 

with the above suggest the MPFC/BA10 and PCC equally contribute to the success of the 366 

DMN core classifier accuracy, but the activation pattern of the whole DMN core subsystem 367 

is needed for the best classification power. 368 

 369 
Fig. 3 The DMN core subsystem during pre-trial rest periods predicted the decision to 370 

choose to think about the self with 83% accuracy, p < .001. (A) depicts the DMN core 371 

subsystem. (B) depicts the multivoxel pattern generated by the SVM to differentiate rest 372 



12 

activity that proceeds self-choice rather than other-choice. Red indicates regions where 373 

activity predicts self-choice and blue indicates regions where activity predicts other-choice. 374 

  375 

A neural signature that predicts self-focus: Evidence from the resting state scan 376 

 377 

The Pre-self Pattern in the Default Network Core Subsystem during Long Periods of Rest 378 

Predict Self-Reported Self-Focus 379 

 380 

So far, we have identified a pre-self pattern which predicts self-focused behavior in a 381 

forced choice task. Our next goal was to determine if the pre-self pattern generalizes to 382 

predict self-focus in another context—an extended resting state scan. In the beginning of 383 

our experiment, participants completed an 8-minute resting state scan and every 2 384 

minutes completed a series of self-reports. They were asked to rate, on a 1-to-5 scale, 385 

how much they are thinking about themselves, others, the past, and the future (Figure 386 

1B). Here, we asked: does the presence of the pre-self pattern preferentially predict self-387 

reported self-focus? We performed an instatement analysis–a within-subjects, TR-to-TR 388 

multivariate pattern similarity analysis–assessing the similarity between subjects’ 1) pre-389 

self pattern and 2) resting state scan pattern in the default network core subsystem. 390 

Specifically, each TR of the rest data was masked by the Yeo DMN core subsystem and 391 

correlated with the DMN core subsystem pre-self pattern. Correlation values were then 392 

averaged for the two-minute rest sections and fisher z-transformed. A linear mixed model 393 

assessed how self-reported thought content (self, other, future, and past) as well as the 394 

section of rest affected the mean correlation. To ensure that the regressors were not 395 

introducing collinearity to the model we ran tolerance and variance inflation factors (VIF). 396 

Results indicated that collinearity is not an issue in our model: all tolerance values were 397 

over 75% (Self = 82, Other = 90, Future = 77, Past = 88, and Section = 93) and all VIF 398 

results were well below the threshold of 4 (Self = 1.2, Other = 1.1, Future = 1.3, Past = 399 

1.1, and Section = 1.1). 400 

  401 

A stronger presence of the pre-self pattern corresponded with greater self-reported self-402 

focused thought (β = .19, standardized β = 0.09, t(105.1) = 2.03, and p = 0.045) but not 403 

other-focused thought (β = 0.07, standardized β = 0.08, t(104.1) = .85, and p = 0.40), 404 

future-focused thought (β = -0.01, standardized β = 0.08, t(92.6) = -0.10, and p = 0.92), 405 

past-focused thought (β = 0.05, standardized β = 0.07, t(86.8) = 0.70, and p = 0.49) or the 406 
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section of the long rest (β = .06, standardized β = 0.06, t(80.1) = 0.91, and p = 0.37). 407 

Follow-up analyses with the dmPFC and MTL subsystems, as well as the MPFC/BA10 408 

and PCC examined individually, did not produce significant results (β’s < 0.14, p’s > 0.10). 409 

Thus, multivariate patterns in the default network core subsystem—derived from short, 410 

jittered rest to predict subsequent choice to think about the self—is also able to predict 411 

self-reported, self-focused thought during long rest. 412 

 413 

 414 
 415 

Fig. 4 Applying the pre-self pattern to extended rest with experience sampling. (A) Our 416 

analytic approach started with a within-subjects, TR-to-TR multivariate pattern similarity 417 

analysis, assessing the similarity between subjects’ 1) pre-self pattern and 2) resting state 418 

scan pattern in the default network core subsystem. Those correlation values were then 419 

averaged for the two-minute rest sections and fisher z-transformed. A linear mixed model 420 

assessed how self-reported thought content (self, other, future, and past) as well as the 421 

section of rest affected the mean correlation. B) In the results graph, the y-axis displays 422 

the normed mean correlation of the long rest neural patterns (in the DMN core) with the 423 

multivoxel classifying pre-self pattern generated (in the DMN core). The x-axis is the self-424 

reported self-focus rating that follows each of the two-minute sections of rest from 1 = “not 425 

at all” to 5 = “completely”. We found that the strength of the DMN core subsystem 426 

multivoxel pattern during rest was significantly related to self-reported self-focus (β = .19, 427 

standardized β = 0.09, t(105.1) = 2.03, p = 0.045). In other words, the DMN core 428 
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multivariate pattern derived from short, jittered rest to predict subsequent choice to think 429 

about the self, is also able to decode self-focused thought during long rest. 430 

  431 

The Pre-self Pattern Temporally Predicts the Neural Active Self-Reflection Pattern during 432 

Long Periods of Rest  433 

  434 

So far, we have assessed whether the pre-self pattern predicts behavioral markers of self-435 

focus: self-focused decisions and self-reported self-focus. Could the pre-self pattern even 436 

predict a marker of self-focus that participants do not necessarily report on? To answer 437 

this question, we computed, for each subject, a multivariate pattern that reflected their 438 

active self-reflection in our final fMRI task, in which they answered questions about 439 

themselves such as “am I an ambitious student?”. We then used instatement analysis to 440 

test whether the presence of the pre-self pattern precedes the presence of this self-441 

reflection-pattern in the core default network subsystem. We restricted our analyses to the 442 

core subsystem because of the accumulating evidence so far that distributed patterns in 443 

this network meaningfully predict self-focus. We took each participant’s multivariate self-444 

reflection pattern from the final fMRI task and assessed its neural pattern similarity with 445 

each second (i.e., TR) of the resting state scan. We then assessed if resting state neural 446 

pattern similarity to the pre-self pattern temporally predicted neural pattern similarity to the 447 

self-reflection-pattern. Specifically, linear mixed models assessed if pre-self pattern 448 

correlation strength predicted active self-reflection pattern correlation strength 5 TRs 449 

later51. We selected the length of 5 TRs because the pre-self pattern was generated using 450 

a jittered-rest period that was on average 4.5 seconds. Analyses are performed on fisher 451 

z-transformed correlation values. It is noteworthy that the pre-self pattern and self-452 

reflection pattern for each subject demonstrated small correlations (-.03 < r’s < .08). We 453 

therefore ran the linear mixed models two ways: 1) with the pre-self pattern correlation 454 

predicting the self-reflection-pattern 5 TRs later and 2) with the self-reflection pattern 455 

predicting the pre-self pattern 5 TRs later. Running both of these analyses helped ensure 456 

the small correlation between the two patterns was not driving observed temporal results. 457 

In the default network core subsystem, the strength of the pre-self pattern significantly 458 

predicted the strength of the active self-reflection pattern 5 TRs later (β = .06, standardized 459 

β = 0.06, t(14716) = 2.93, p = 0.003). The opposite was not true; active self-reflection 460 

patterns did not significantly predict pre-self patterns 5 TRs later (β = .05, standardized β 461 

= 0.04, t(14716) = 1.53, p = 0.125). Thus, multivariate patterns in the default network core 462 

https://paperpile.com/c/EdFEvP/FFRdI
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subsystem—derived from short, jittered rest to predict subsequent choices to think about 463 

the self—are also able to temporally predict neural indices of active self-reflection during 464 

long rest. 465 

 466 

We also capitalized on the active self-reflection pattern to test whether the relationship 467 

between the pre-self pattern and self-reported self-focus (reported in the section above) 468 

is independent of a relationship between the active self-reflection pattern and self-reported 469 

self-focus. A linear mixed model, that included both the pre-self pattern and the active self-470 

reflection pattern as independent predictors of self-reported self-focus showed that there 471 

was still a significant relationship between pre-self pattern instatement and self-reported 472 

self-focus (β = .20, standardized β = 0.10, t(102.4) = 2.08, and p = 0.041). Indeed, when 473 

we looked at variance inflation factors, VIF results were well below the threshold of 4 (‘pre-474 

self’ pattern = 1.01 and self-reflection pattern = 1.02). This further suggests that the pre-475 

self pattern is not redundant with active self-reflection.  476 

 477 

 478 
 479 

Fig. 5 Relationship between Pre-self Pattern and Active Self-Reflection Pattern Over 480 

Long Rest (A) depicts the approach: the pre-self pattern (blue) was correlated with each 481 

TR of the resting state scan and the active self-reflection pattern (orange) was also 482 

correlated with each TR of the resting state scan. This allowed us to assess whether the 483 

presence of the pre-self pattern temporally predicted the presence of the active self-484 

reflection pattern. (B) visualizes the results for a single subject, demonstrating that the 485 

presence of the pre-self pattern (blue) predicts the presence of the active self-reflection 486 

pattern (orange) 5 seconds later. Note that the self-reflection pattern strength visualized 487 
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in orange has been shifted in time (n + 5 seconds) to help visualize its relationship with 488 

the pre-self pattern.  489 

  490 

A neural signature that predicts self-focus: Evidence from the Human Connectome 491 

Project 492 

 493 

In the Human Connectome Project Dataset, High Internalizers Rhymically Default to the 494 

Pre-self Pattern   495 

 496 

The results from our dataset suggest that we can decode the bias towards self-focus–the 497 

pre-self pattern predicts self-focused decisions, subjective self-focus during rest, and the 498 

presence of active self-reflection neural patterns a few seconds later. Self-focused thought 499 

is implicated in mental health conditions, particularly internalizing disorders such as 500 

anxiety and depression52–55. Could the pre-self pattern be used to predict internalizing 501 

scores in an entirely separate sample of participants? If so, this would have great utility: it 502 

would suggest we derived a neural marker that, down the line, could be used to identify a 503 

person’s vulnerability to internalizing conditions. In a first step towards this goal, we took 504 

the pre-self pattern, created in our 32 subject dataset, and applied it to a larger dataset to 505 

show that the pattern translates not just across tasks but also across datasets and 506 

subjects. 507 

  508 

We conducted an instatement analysis–a TR-to-TR pattern matching analysis–in the 509 

Human Connectome project dataset (N=1086) with our pre-self pattern in the core default 510 

network subsystem. Specifically, we assessed the degree of instatement of the pre-self 511 

pattern during each TR of the baseline resting state scan. Participants in the Human 512 

Connectome dataset each have an internalizing score, which reflects symptoms like 513 

anxiety, depression, and withdrawal implicated in maladaptive self-focus. We 514 

hypothesized that the extent to which we see the pre-self pattern during rest will be related 515 

to participants' internalizing scores. Because maladaptive self-focus is characterized by 516 

an incessant focus on the self, we specifically wondered if internalizing predicts the 517 

temporal structure of participants’ movement into and out of the pre-self pattern. 518 

 519 

For every TR, we correlated each subject’s internalizing score with their pre-self pattern 520 

instatement value. Visual inspection revealed a rhythmic nature to the results of this 521 

https://paperpile.com/c/EdFEvP/4x2Q+MRvn+7BEH+o6cR
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analysis, such that greater internalizing appeared to correspond with greater pre-self 522 

pattern instatement around the first 150 TRs and rhythmically returned multiple times 523 

throughout the resting state scan (Figure 6C). That said, it is difficult to determine from 524 

visual inspection alone if the high internalizers drive this temporal structure (or, 525 

alternatively, if low internalizers drive the result such that low internalizing is associated 526 

with less frequent pre-self pattern instatement). Given that internalizing is associated with 527 

maladaptive self-focus, we predicted the result is driven by the high internalizers. To test 528 

this prediction explicitly, we completed an inter-subject representational similarity analysis 529 

(IS-RSA41). The goal of IS-RSA is to determine whether individuals similarly high on a 530 

given dimension (here, internalizing) show similar brain responses. Specifically we 531 

analyzed the relationship between a subject’s internalizing score and the frequencies at 532 

which they move in and out of the pre-self pattern.  533 

 534 

 535 
 536 

Fig. 6 Human Connectome Project Group Level Analysis Each TR of the 14.5 minutes 537 

of rest was masked by the Yeo DMN core subsystem ROI and then correlated with 538 

corresponding pre-self pattern. Next we correlated each subjects internalizing score with 539 

their pre-self pattern instatement value for each TR. Visual inspection revealed a rhythmic 540 

nature to the results of this analysis, such that greater internalizing appeared to 541 

correspond with greater pre-self pattern instatement around the first 150 TRs and 542 

rhythmically returned multiple times throughout the resting state scan. 543 

 544 

We took an “Anna Karenina” model approach to our IS-RSA, named after the opening line 545 

of Tolstoy’s famous novel, which goes, “All happy families are alike; each unhappy family 546 

https://paperpile.com/c/EdFEvP/unEM
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is unhappy in its own way”56. In our case, we hypothesized that all high internalizers move 547 

rhythmically in and out of the pre-self pattern alike, while low internalizers move in and out 548 

of the preself pattern in their own unique ways. For each Human Connectome participant, 549 

we performed a fourier transformation on their instatement time course–the time course 550 

reflecting the presence of the pre-self pattern during each TR of their resting state scan 551 

(Figure 7). We wanted to include as many frequencies as made sense given the time 552 

dynamics of fMRI and the hemodynamic response. We selected all of the frequencies 553 

from the slowest frequency– with a period of the length of the whole 14.5 min rest period–554 

to the frequency with a period of 4 seconds. This generated, for each participant, a vector 555 

of sixty-nine frequencies’ magnitudes and angles (a total of 138 data points) (Fig 7). We 556 

then Pearson correlated each subject’s frequency vector with each other to populate an 557 

inter-subject frequency similarity matrix. 558 

 559 

To connect individual differences in internalizing to neural activity, we first converted 560 

subjects’ internalizing scores into ranks, making low internalizing subjects ranked low and 561 

high internalizing subjects ranked high (range of ranks = 0-1085 for N=1086).  Our Anna 562 

Karenina model represented the subject pair’s similarity of frequency vectors as the mean 563 

of the pair’s internalizing rank. The higher the pair’s internalizing rank, the higher their 564 

similarity in pre-self pattern instatement frequency (indicating more normative patterns of 565 

movement into and out of the pre-self pattern), and vice-versa. This generated our 566 

1086*1086 inter-subject mean internalizing matrix. See Fig. 7 for a depiction of the Anna 567 

Karenina model. 568 

 569 

 570 

https://paperpile.com/c/EdFEvP/pj18
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Fig. 7 Intersubject Representational Similarity Analysis (IS-RSA): High Internalizers 571 

Rhythmically Return to the Pre-Self Pattern For our IS-RSA we compared the rhythms 572 

observed in individuals instatement of the pre-self pattern with a Anna Kerenina model of 573 

internalizing such that the higher the pair’s internalizing rank, the higher their similarity in 574 

pre-self pattern instatement frequency (indicating more normative patterns of movement 575 

into and out of the pre-self pattern), and vice-versa. A non-parametric, Mantel permutation 576 

test (see Methods) showed the internalizing Anna Karinina model was a significantly good 577 

match for the   pre-self pattern instatement frequency matrix (r = .023, p = .003). 578 

 579 

Finally, these two matrices–the inter-subject mean internalizing and frequency similarity 580 

matrices–were correlated and this correlation was statistically tested using a non-581 

parametric, Mantel permutation test (see Methods). The Anna Karenina model was 582 

significant (r = .023, p = .003, Mantel permutation test). In other words, people high on 583 

internalizing, a clinical variable highly related to maladaptive self-focus, show a similar 584 

temporal structure to the presence of the pre-self pattern, repeatedly returning to it 585 

throughout an extended resting state scan.  586 

 587 

Discussion 588 
 589 
We set out to determine if we could find a neural pattern that predicts the bias towards 590 

self-focus and this work has done just that. The pre-self pattern in the core default network 591 

subsystem decodes the subsequent decision to focus on the self with high accuracy. 592 

When we apply it to other outcomes in our dataset, the pre-self pattern in the core default 593 

network subsystem also predicts self-reported self-focus during extended rest periods. It 594 

is even capable of temporally predicting the presence of a neural pattern capturing active 595 

self-reflection during long rest. Finally, when applied in the Human Connectome Project 596 

dataset, our pre-self pattern significantly related to internalizing scores in the Human 597 

Connectome Project data. Individuals with high internalizing scores moved into and out of 598 

the pre-self pattern in similar rhythmic ways during a baseline resting state scan. This 599 

result offers a unique way to think about how internalizing relates to brain function–it may 600 

systematically warp the temporal trajectories of mind wandering, keeping one’s attention 601 

incessantly focused on the self.  602 

  603 
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What is going on–in terms of a psychological process–in participants' brains when we 604 

observe the pre-self pattern? Importantly, while the pre-self pattern is modestly correlated 605 

with a pattern reflecting active self-reflection (from a task in which participants were 606 

instructed to reflect on themselves), it is not redundant with the active self-reflection 607 

pattern. Rather, the pre-self pattern temporally predicts the later presence of the active 608 

self-reflection pattern and explains unique variance in participants’ self-reported self-609 

focus. Whatever psychological process may be captured by our pre-self pattern, it seems 610 

to be distinct from active self-reflection.  611 

 612 

There may be at least three possible psychological phenomena captured by our pre-self 613 

pattern. First, the pre-self pattern may signify a “loading” of the self; a coming online of a 614 

self-schema through which to view and interact with the world. Consistent with this view, 615 

some posit that we constantly exist in a framework of the self, as we understand our world 616 

through our own experiences and embodied sense of self, which we constantly exist in57. 617 

The second possibility is related to the first: the pre-self pattern could reflect the persistent 618 

cognitive accessibility of the self58–60. Cognitive category accessibility was first proposed 619 

by Bruner60 and suggests that the attentional framework we are in directly influences what 620 

we subsequently perceive or think about. Thus, the pre-self pattern may reflect an 621 

attentional state that facilitates quick access to self-knowledge. Third, it is possible the 622 

pre-self pattern represents a motivational state. Specifically, participants may be 623 

experiencing a temptation or impulse to think about the self. This is an urge that they could 624 

potentially resist or succumb to, perhaps with significant implications for mental health, 625 

specifically rumination. Future research will help arbitrate between these competing 626 

possibilities. Regardless of the potential psychological process reflected in the pre-self 627 

pattern, its observation is consistent with predictive coding accounts of brain function, 628 

which broadly suggest endogenous, default brain states predict subsequent perception 629 

and cognition21–23. 630 

   631 

Part of what makes the pre-self pattern useful is that it predicts self-focus in multiple ways 632 

and even across different datasets. This means that it could be utilized as a decoding tool 633 

in future research on the role of self-focus in other relevant behaviors. For example, self-634 

focus during conversation corresponds with worse relationship quality61 and reducing self-635 

concept accessibility has been suggested to help us engage with other people’s points-636 

of-view62. Yet, objective markers of these phenomena, as well as a clear explanation as 637 

https://paperpile.com/c/EdFEvP/zqhB
https://paperpile.com/c/EdFEvP/5zTx4+7gGv0+9RB0H
https://paperpile.com/c/EdFEvP/9RB0H
https://paperpile.com/c/EdFEvP/7uEa+HsqP+EeTI
https://paperpile.com/c/EdFEvP/FnVF
https://paperpile.com/c/EdFEvP/7THH
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to how they occur, remains to be determined. The pre-self pattern provides a neural 638 

signature to better understand the bias towards self-focus in multiple aspects of everyday 639 

life.  640 

 641 

The pre-self pattern may also be a useful decoding or investigative tool in mental health 642 

research. Among Human Connectome Project participants, repeatedly and rhythmically 643 

moving into the pre-self pattern during rest corresponded with internalizing symptoms, 644 

including depression and anxiety. Rumination–repetitive and recurrent negative thinking 645 

about oneself52–is thought to play a key role in internalizing disorders53–55. Yet, the neural 646 

mechanism that explains why and how rumination spontaneously occurs is not fully 647 

understood, although past work has associated the default network with depression and 648 

anxiety63,64. The pre-self pattern may offer key insight into the basic mechanisms 649 

underlying rumination. Moreover, the pre-self pattern may be applied to patient 650 

populations and/or individuals at risk for developing internalizing disorders to help predict, 651 

and perhaps eventually offset, maladaptive self-focus. 652 

 653 

Self-focus is a pervasive human phenomenon that plays a vital role in our lives—from 654 

detecting our hunger cues to understanding our social standing. However, in its most 655 

pernicious forms, self-focus is a risk and maintenance factor for internalizing disorders 656 

such as depression and anxiety14–19. This paper documents a neural signature–the pre-657 

self pattern in the core subsystem of the default network–that biases people towards self-658 

focus. The pre-self pattern predicts self-focused decisions, subjective self-focus during 659 

rest, and the presence of active self-reflection neural patterns a few seconds later. 660 

Moreover, rhythmically returning to the pre-self pattern in the core subsystem during rest 661 

predicted internalizing scores in a large sample of participants from the Human 662 

Connectome Project. With this pre-self pattern in hand, we are one step closer towards 663 

understanding why humans can not help but focus on themselves, as well as how this 664 

process goes awry in mental health conditions. 665 

 666 

Methods 667 
Our Dataset: 668 

 669 

Participants  670 

https://paperpile.com/c/EdFEvP/4x2Q
https://paperpile.com/c/EdFEvP/MRvn+7BEH+o6cR
https://paperpile.com/c/EdFEvP/LdUr+8iJv
https://paperpile.com/c/EdFEvP/7jdE9+MAANT+OO3ng+K3bob+pjNYS+F00qM
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Thirty-two individuals (19 identifying as female, mean age = 22.4 years, SD=4.5 years; 671 

21=Caucasian, 9=Asian, 5=Multiracial, 3=Latina/Hispanic, 1=Pacific Islander, 1=Prefer 672 

Not To Say) completed our fMRI study. Participants were eligible to participate if they were 673 

safe for MRI scanning (e.g., no metal in their body, not pregnant, not claustrophobic). All 674 

participants completed informed consent in accordance with the university institutional 675 

review board (IRB). 676 

  677 

Procedures 678 

Resting State Scan. The first fMRI run that the participants completed was an 8 minute 679 

long resting state scan. The 8 minutes were broken up into four, 2 minute long sections. 680 

After each 2 minute section, participants had 32 seconds to rate the extent to which they 681 

were thinking about themselves, others, the future, and the past. For the first six 682 

participants this rating time was 25 seconds, but it was expanded to make sure participants 683 

were able to complete all four of the ratings. This was accounted for in all subsequent 684 

analyses by ensuring that all the rating TRs were regressed out in the residual image 685 

calculation stage of analysis detailed below. These ratings were made on a continuous 686 

scale with ‘not at all’ on one end, ‘completely’ on the other end, and ‘somewhat’ in the 687 

middle of the scale. Participants utilized a trackball mouse to make their selection and a 688 

value between 1 and 5 and to the 14th decimal point was recorded for each of the 689 

categories (self, other, future, and past). 690 

  691 

Self-Focus Choice Task. For the self-focus choice task, participants were led to believe 692 

that they were selecting the trial types they would receive in a separate task that would 693 

follow. In actuality, after completing this choice task, all participants proceeded to get the 694 

same task, described below. The choice task started with a pre-trial jittered rest period 695 

(2.5–6 sec, mean = 4.5 sec), followed by the choice activity where participants choose 696 

who (themselves, a close other (i.e., a self-nominated friend), or a well-known other (i.e., 697 

President Biden) they wanted to think about in a later task (5 sec). This design is an 698 

adaptation of previous fMRI paradigms used to assess self-reflection32,66–68. To  make the 699 

task more engaging, and to confirm default MPFC/BA10 brain states predict self-focus 700 

broadly, as opposed to considering the self along a certain dimension(s), specifically, we 701 

included six different categorical dimensions such that participants made choices about 702 

who to think about along the following dimensions: social roles (e.g., being a daughter), 703 

preferences, physical traits, personality traits, future, and past. Participants made a total 704 

https://paperpile.com/c/EdFEvP/mal1I+FoBk3+OVKvX+euBST
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of 108 choices (split into two runs each lasting 11 minutes and 40 seconds), evenly 705 

distributed between 18 choices per dimension. After each decision regarding what trial 706 

type they would get in a later scanner task, participants completed an attention reorienting 707 

trial in which they picked which of two bottom shapes matched the top shape (2–4.5 sec, 708 

mean = 3 sec). This attention reorienting task served as a “mental palate cleanse,” to get 709 

participants’ minds off of their last choice before the next jittered rest. Participants were 710 

instructed not to actively reflect on the topic and subject that they selected, but instead to 711 

make the decision that first came to mind, and next focus on the shape matching task. 712 

See Figure 1A for a schematic of the task. 713 

  714 

Self-Reflection Task. The last fMRI task that participants completed for the study was an 715 

active self-reflection task. In this task participants rated how well an adjective described 716 

their personality in different social roles (Friend, Student, Significant Other, Son/Daughter, 717 

and Worker) on a scale from 1 to 4 using button boxes. We used the Big 5 list of 100 718 

adjectives69. These are adjectives evenly split among the Big 5 (agreeableness, 719 

conscientiousness, intellect, emotional stability, and surgency) as well as positive and 720 

negative valence. The social role participants reported on shifted every 10 adjectives. We 721 

used a change in text color to ensure participants noted this change. The number of 722 

adjectives from each of the Big 5, as well as the positive and negative valence, were 723 

balanced across the five roles. The rating trials were 4 seconds long and the jittered rest 724 

was 1–3 sec, mean = 2 sec. There were two runs of 101 trials each, with a total of 202 725 

trials. We used this task here to generate, for each subject, a neural pattern of their active 726 

self-reflection. Other analyses can be run with this task to answer separate theoretical 727 

questions, but are outside of the scope of this report and will not be examined here. 728 

  729 

Behavioral Analysis 730 

 For the Self-Focus Choice Task, we first conducted an analysis of variance (ANOVA) 731 

testing whether the number of choices varied across the target factor (self vs. friend vs. 732 

Biden). Then, because the interaction was significant, we followed up with paired-sample 733 

t-tests to confirm the interaction is driven by more decisions for the self. These paired 734 

sample t-tests were performed using the R package jmv to compare choice of subject 735 

(self, friend, or Biden). Another ANOVA tested whether RT varied across the target factor 736 

(self vs. friend vs. Biden). Next, because the results were significant, linear mixed models 737 

using the R package lme4 were constructed to assess how choice of subject (self, friend, 738 

https://paperpile.com/c/EdFEvP/oRfuI
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or Biden) affected the response time51. We then tested whether choice and, separately, 739 

RT, interacts with the dimension (roles, preferences, etc). First, we conducted an ANOVA 740 

testing the interaction of the terms, and found that there was a significant interaction with 741 

choice but not response time. So because the choice interaction was significant, we 742 

followed up with paired sample t-tests on choice of subject (self, friend, or Biden), with 743 

data limited to each category (Roles, Preferences, Physical Traits, Personality Traits, 744 

Future, and Past). Binomial linear mixed models using the R package lme4 were 745 

constructed to assess if there were changes in choice preferences over the course of the 746 

task (i.e., with time). Three models were constructed, one for each of the choices (self, 747 

friend, and Biden) with trial number, run number, and the interaction of trial number and 748 

run number included as regressors. 749 

  750 

fMRI Collection 751 

Brain imaging took place on a Siemens Prisma 3T scanner. Functional runs were acquired 752 

using a T2*-weighted echo-planar imaging sequence (2.5-mm voxels, repetition time 753 

[TR]= 1,000 ms, time to echo [TE] = 30 ms, 2.5-mm slice thickness, field-of-view [FOV] = 754 

24 cm, matrix = 96, flip angle = 59, and simultaneous multislice = 4). A T2-weighted 755 

structural image was acquired coplanar with the functional images (0.9-mm voxels, TR = 756 

2,300 ms, TE = 2.32 ms, 0.9-mm slice thickness, FOV = 24 cm, matrix = 256 256, and flip 757 

angle = 8) for the purpose of aligning functional data to brain structure during 758 

preprocessing. For the fMRI tasks, sequence optimization was obtained using 759 

optimizeXGUI in MatLab70. 760 

  761 

fMRI Preprocessing 762 

For the fMRI dataset we collected, results included in this manuscript come from 763 

preprocessing performed using fMRIPrep 20.2.271,72 (RRID:SCR_016216), which is based 764 

on Nipype 1.6.173,74 (RRID:SCR_002502). Per recommendations from the software 765 

developers, we report the exact text generated from the boilerplate below. 766 

For each of the 2 BOLD runs found per subject (across all tasks and sessions), the 767 

following preprocessing was performed. First, a reference volume and its skull-stripped 768 

version were generated using a custom methodology of fMRIPrep. Head-motion 769 

parameters with respect to the BOLD reference (transformation matrices, and six 770 

corresponding rotation and translation parameters) are estimated before any 771 

spatiotemporal filtering using mcflirt75 (FSL 5.0.9). A B0-nonuniformity map (or fieldmap) 772 

https://paperpile.com/c/EdFEvP/FFRdI
https://paperpile.com/c/EdFEvP/6IJQy
https://paperpile.com/c/EdFEvP/OTJC+bR5c
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was estimated based on a phase-difference map calculated with a dual-echo GRE 773 

(gradient-recall echo) sequence, processed with a custom workflow of SDCFlows inspired 774 

by the epidewarp.fsl script and further improvements in Human Connectome Project 775 

Pipelines76. The fieldmap was then co-registered to the target EPI (echo-planar imaging) 776 

reference run and converted to a displacements field map (amenable to registration tools 777 

such as ANTs) with FSL’s fugue and other SDCflows tools. Based on the estimated 778 

susceptibility distortion, a corrected EPI (echo-planar imaging) reference was calculated 779 

for a more accurate co-registration with the anatomical reference. The BOLD time-series 780 

(including slice-timing correction when applied) were resampled onto their original, native 781 

space by applying a single, composite transform to correct for head-motion and 782 

susceptibility distortions. These resampled BOLD time-series will be referred to as 783 

preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD reference 784 

was then co-registered to the T1w reference using flirt77 (FSL 5.0.9) with the boundary-785 

based registration78 cost-function. Co-registration was configured with nine degrees of 786 

freedom to account for distortions remaining in the BOLD reference. Several confounding 787 

time-series were calculated based on the preprocessed BOLD: framewise displacement 788 

(FD), DVARS and three region-wise global signals. FD was computed using two 789 

formulations following Power (absolute sum of relative motions79) and Jenkinson (relative 790 

root mean square displacement between affines75). FD and DVARS are calculated for 791 

each functional run, both using their implementations in Nipype (following the definitions 792 

by Power et al.79). The three global signals are extracted within the CSF, the WM, and the 793 

whole-brain masks. Additionally, a set of physiological regressors were extracted to allow 794 

for component-based noise correction80 (CompCor). Principal components are estimated 795 

after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter 796 

with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical 797 

(aCompCor). tCompCor components are then calculated from the top 2% variable voxels 798 

within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined 799 

CSF+WM) are generated in anatomical space. The implementation differs from that of 800 

Behzadi et al.80 in that instead of eroding the masks by 2 pixels on BOLD space, the 801 

aCompCor masks are subtracted a mask of pixels that likely contain a volume fraction of 802 

GM. This mask is obtained by thresholding the corresponding partial volume map at 0.05, 803 

and it ensures components are not extracted from voxels containing a minimal fraction of 804 

GM. Finally, these masks are resampled into BOLD space and binarized by thresholding 805 

at 0.99 (as in the original implementation). Components are also calculated separately 806 

https://paperpile.com/c/EdFEvP/BbLm4
https://paperpile.com/c/EdFEvP/cmfX
https://paperpile.com/c/EdFEvP/WFXM
https://paperpile.com/c/EdFEvP/KNvd
https://paperpile.com/c/EdFEvP/fW6Y
https://paperpile.com/c/EdFEvP/KNvd
https://paperpile.com/c/EdFEvP/zPMw
https://paperpile.com/c/EdFEvP/zPMw


26 

within the WM and CSF masks. For each CompCor decomposition, the k components with 807 

the largest singular values are retained, such that the retained components’ time series 808 

are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, 809 

combined, or temporal). The remaining components are dropped from consideration. The 810 

head-motion estimates calculated in the correction step were also placed within the 811 

corresponding confounds file. The confound time series derived from head motion 812 

estimates and global signals were expanded with the inclusion of temporal derivatives and 813 

quadratic terms for each81. Frames that exceeded a threshold of 0.5 mm FD or 1.5 814 

standardized DVARS were annotated as motion outliers. The BOLD time-series were 815 

resampled into standard space, generating a preprocessed BOLD run in 816 

MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version 817 

were generated using a custom methodology of fMRIPrep. All resamplings can be 818 

performed with a single interpolation step by composing all the pertinent transformations 819 

(i.e. head-motion transform matrices, susceptibility distortion correction when available, 820 

and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings 821 

were performed using antsApplyTransforms (ANTs), configured with Lanczos 822 

interpolation to minimize the smoothing effects of other kernels82. Non-gridded (surface) 823 

resamplings were performed using mri_vol2surf (FreeSurfer). 824 

  825 

Residual Image Calculation 826 

For the Self-Focus Choice Task, in order to examine neural activity during pre-trial rest 827 

that is not biased by neural activity during the choice activity or shape matching activity, 828 

we first regressed out the effects of the choice activity and shape matching activity as well 829 

as the effects of motion. This step is in line with prior research examining pre-trial neural 830 

responses32,83,84. All analyses of the pre-trial jitter period were run on the residual images 831 

saved from those models. Specifically, residual images were calculated by modeling the 832 

choice task and shape-matching task convolved with the canonical hemodynamic 833 

response function in a general linear model. This model included nuisance regressors for 834 

the six motion parameters (x, y, and z directions and roll, pitch, and yaw rotations), each 835 

motion parameter’s derivative and square of the derivative, linear drift, and run constants. 836 

We additionally regressed out TRs in nonsteady state and TRs that exhibited spikes of 837 

motion found from global signal outliers and outliers derived from frame differencing (each 838 

3 SDs). We used a smoothing kernel of 6 on the residual images that were used for the 839 

https://paperpile.com/c/EdFEvP/Kcej
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parametric modulation analysis but no smoothing kernel on the residual images used for 840 

the MVPA analysis. 841 

  842 

Consistent with prior resting state research85, we also calculated residual images for the 843 

long rest task. In order to examine neural activity during rest that is not biased by neural 844 

activity during the self-report rating activity, we first regressed out the effects of the self-845 

report rating activity as well as the effects of motion. All analysis of the long rest periods 846 

were run on the residual images saved from those models. Specifically, residual images 847 

were calculated by modeling the rating task convolved with the canonical hemodynamic 848 

response function in a general linear model. This model included nuisance regressors for 849 

the six motion parameters (x, y, and z directions and roll, pitch, and yaw rotations), each 850 

motion parameter’s derivative and square of the derivative, linear drift, and run constants. 851 

We additionally regressed out TRs in nonsteady state and TRs that exhibited spikes of 852 

motion found from global signal outliers and outliers derived from frame differencing (each 853 

3 SDs). Finally, we used a smoothing kernel of 6. 854 

    855 

Parametric Modulation  856 

Prior work examining pre-trial rest has used parametric modulation analyses to show that 857 

greater MPFC/BA10 activity during pre-trial rest accelerates self-reflection32. To see if we 858 

conceptually replicate this result, tor the self-focus choice task, we performed a parametric 859 

modulation analysis, examining Yeo’s MPFC ROI43 specifically, to determine if faster 860 

decisions to choose to think about the self are preferentially preceded by pre-trial 861 

MPFC/BA10 activity. We used nltools86 in python to create a first-level model (performed 862 

on participants’ residual images) that comprised a regressor for the rest period before 863 

each trial, a regressor of which choice the participant made in the trial that followed the 864 

rest period (self, friend, or Biden), and finally, a regressor of the mean centered RT for 865 

that trial. We created a contrast of self versus other, where friend and Biden were 866 

combined into the other category. We focused on this self versus other contrast so that 867 

there were a near equal number of trials in each group (self = 1696, friend = 1127, Biden 868 

= 624, other = 1751) and to limit the number of comparisons we made. We then found the 869 

mean activation of this contrast in Yeo’s MPFC ROI for each subject. Paired sample t-870 

tests were performed on these results using the R package stats87. A follow-up whole-871 

brain parametric modulation analysis was completed to investigate if any other brain 872 

regions demonstrated a parametric effect, and/or if other contrasts showed a parametric 873 

https://paperpile.com/c/EdFEvP/8HE6S
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effect. We looked at four contrasts, 1) self vs other (friend and Biden), 2) self vs. friend, 3) 874 

self vs. Biden and 4) friend vs. Biden). We then performed a second-level model for each 875 

of these contrasts, utilizing nltools86 in python, with a voxelwise false discovery rate 876 

corrected p < .05 threshold, contrast 1 k=99 cluster extent threshold, contrast 2 k=109 877 

cluster extent threshold, contrast 3 k=49 cluster extent threshold, contrast 4 k=51 cluster 878 

extent threshold as determined by AFNI’s 3dClustSim cluster size correction. 879 

  880 

Multi-voxel Pattern Analysis (MVPA)  881 

To determine if we can “decode” the bias towards self-focus from pre-trial rest, we 882 

performed multi-voxel pattern analysis on a whole brain activation map masked by the 883 

MPFC/BA10, the three subsystems of the default mode network (default network core, 884 

dMPFC subsystem, and MTL subsystem) as identified by Yeo et al.43, as well as an 885 

unmasked whole brain activation map. These masks were chosen because we were 886 

interested in assessing the MPFC/BA10 role’s in particular, and the default network’s role 887 

more broadly in prompting us toward self-focus. We again used the contrast of self versus 888 

other, where friend and Biden were combined into the other category. We focused on this 889 

self versus other contrast so that there were a near equal number of trials in each group. 890 

We trained a linear SVM to discriminate a subsequent choice of self (coded as 1 in the 891 

classification) versus other (coded as -1 in the classification) with a k-fold cross-validation 892 

procedure88–90. In the statistical learning literature88,91, there are many types of 893 

classification algorithms, but they generally perform very similarly on problems such as 894 

the one we pursued here. SVM algorithms such as the one we used in this study are the 895 

most widely used algorithm for two-choice classification and are robust and reasonably 896 

stable in the presence of noisy features. 897 

  898 

We computed prediction performance using a 6-fold balanced cross-validation 899 

procedure44,45. We subdivided the data into 6 separate folds (5-6 participants in each 900 

group) and used all of the data except for one fold to train the model and then tested the 901 

model using the left-out fold. We then iterated over this process for every possible fold. 902 

This process was completed for each of our five neural maps (MPFC/BA10, whole brain, 903 

DMN core subsystem, dmPFC subsystem, and MTL subsystem) and an average 904 

classification accuracy was calculated for each. A follow up analysis was then done 905 

following the same steps with all of the ROI’s included in Yeo’s DMN core subsystem (right 906 

middle temporal gyrus, right superior frontal gyrus, left middle frontal gyrus with left 907 

https://paperpile.com/c/EdFEvP/DBSG
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superior frontal gyrus, left angular gyrus, right angular gyrus with right middle temporal 908 

gyrus, and PCC) except for the MPFC/BA10 as that ROI was already analyzed. Another 909 

follow up analysis was also done utilizing the same methods with four ROIs, 1) DMN core 910 

subsystem minus the MPFC, 2) DMN core subsystem minus the PCC 3) DMN core 911 

subsystem minus the MPFC/BA10 and PCC, and 4) the MPFC/BA10 and PCC combined. 912 

We ran statistical tests on a total of 15 classifier models over the course of this analysis. 913 

To account for issues with multiple comparisons statistical results are only reported as 914 

significant if they have p < .05/15 or .003. 915 

  916 

To test the statistical significance of these results, we generated null distributions for each 917 

ROI using 10,000 permutations of a 6-fold support vector machine classification analysis. 918 

First, for each subject we relabeled their self and other neural images randomly as self or 919 

other. Then we subdivided the data into 6 separate folds (5-6 participants in each group) 920 

and used all of the data except for one fold to train the model and then tested the model 921 

using the left-out fold. We then iterated over this process for every possible fold. This was 922 

repeated 10,000 times and the average classification accuracy of each permutation was 923 

used to create a null distribution. Our average classification accuracy result was then 924 

compared to this null distribution using nltools86. This process was completed for all of the 925 

neural maps mentioned above (whole brain, DMN core subsystem, dmPFC subsystem, 926 

MTL subsystem, right middle temporal gyrus, right superior frontal gyrus, left middle frontal 927 

gyrus with left superior frontal gyrus, left angular gyrus, right angular gyrus with right 928 

middle temporal gyrus, PCC, and MPFC/ACC, DMN core subsystem minus the MPFC, 929 

DMN core subsystem minus the PC, DMN core subsystem minus the MPFC/BA10 and 930 

PCC, and the MPFC/BA10 and PCC combined). Because results from this analysis 931 

implicated the DMN core subsystem, all subsequent analyses described below move 932 

forward with the DMN core subsystem as the primary mask and follow-up analyses testing 933 

for specificity to this subsystem are run with the other Yeo default network 934 

subsystems/ROIs.  935 

  936 

Self-Reflection Pattern Generation  937 

In order to test whether our pre-self pattern temporally predicts the presence of active self-938 

reflection during passive rest, we needed to create a neural pattern reflecting active self-939 

reflection and subsequently examine instatement of self-reflection neural activity during 940 

long rest. To this end, we generated neural patterns for each subject using their self-941 

https://paperpile.com/c/EdFEvP/DBSG
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reflection task. Specifically, images were calculated by modeling the self-reflection task 942 

convolved with the canonical hemodynamic response function in a general linear model. 943 

This model included nuisance regressors for the six motion parameters (x, y, and z 944 

directions and roll, pitch, and yaw rotations), each motion parameter’s derivative and 945 

square of the derivative, linear drift, and run constants. We additionally regressed out TRs 946 

in nonsteady state and TRs that exhibited spikes of motion found from global signal 947 

outliers and outliers derived from frame differencing (each 3 SDs). Finally, we used a 948 

smoothing kernel of 6. We created a contrast of self-reflection compared to baseline and 949 

saved the resulting image for each subject to use in the subsequent instatement analysis. 950 

  951 

Pre-self and Self-reflection Pattern Instatement During Long Rest  952 

Our next approach to assessing our participants’ resting state data was to see if the 953 

presence of their pre-self pattern predicted their subjective ratings of self-focus during the 954 

rest scan. We performed an instatement analysis–a TR-to-TR pattern matching analysis 955 

with the pattern generated by the MVPA analysisof the DMN core subsystem. Each TR of 956 

the eight minutes of rest was masked by the Yeo DMN core subsystem ROI and then 957 

correlated with the DMN core subsystem pre-self pattern. These correlation values were 958 

then averaged for the two minutes of rest before each rating and z-scored. Linear mixed 959 

models using the R package lme4 were constructed to assess how self-report of thought 960 

content (self, other, future, and past) as well as the section of rest affected the mean 961 

correlation51. To ensure that the regressors were not introducing collinearity to the model 962 

we ran tolerance and variance inflation factors. All VIF results were well below the 963 

threshold of 4 (Self = 1.2, Other = 1.1, Future = 1.3, Past = 1.1, and Section = 1.1) and all 964 

tolerance values were over 75% (Self = 82, Other = 90, Future = 77, Past = 88, and Section 965 

= 93). To follow up on this, analyses were also run with the pre-self patterns generated by 966 

the dmPFC subsystem, MTL subsystem, MFPC, and PCC. 967 

  968 

Given that we now had, for each subject, their pre-self pattern and active self-reflection 969 

pattern (see section above “Self-Reflection Pattern Generation”), we could test whether 970 

the presence of the pre-self pattern temporally predicted the presence of the active self-971 

reflection pattern. We performed an instatement analysis–a TR-to-TR pattern matching 972 

analysis–with the pattern generated by the MVPA analysis of the DMN core subsystem 973 

and the self-reflection pattern generated with the self-reflection task. First, we masked the 974 

self-reflection pattern of each subject to the Yeo DMN core subsystem ROI. Then each 975 

https://paperpile.com/c/EdFEvP/FFRdI
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TR of the eight minutes of rest was masked by the Yeo DMN core subsystem ROI and 976 

correlated with the DMN core subsystem pre-self pattern as well as the masked version 977 

of the self-reflection pattern. Linear mixed models using the R package lme4 were 978 

constructed to assess how correlation strength of the pre-self pattern affected the 979 

correlation strength of the self-reflection pattern 5 TRs later51. We selected the length of 5 980 

TRs because the pre-self pattern was generated using a jittered-rest period that was on 981 

average 4.5 seconds. We tested the correlation of the two neural patterns for each subject 982 

and did find small (r = .08 to -.03). We therefore ran the above analysis both with pre-self 983 

pattern correlation proceeding self-reflection pattern as well as the self-reflection pattern 984 

proceeding the pre-self pattern correlation. This enabled us to make sure that the 985 

correlation of the two patterns was not the cause of significant temporal results. 986 

  987 

Human Connectome Project Dataset: 988 

 989 

Participants 990 

To investigate whether the pre-self pattern from our dataset generalizes to predict self-991 

focus in other data, we also used data from the first resting state scan of the Human 992 

Connectome Project, hereafter referred to as the Human Connectome Project dataset65. 993 

The dataset is openly accessible and consists of a large sample of neurotypical 994 

individuals. Data from the Human Connectome Project are publicly available in the online 995 

Human Connectome Project repository (https://db.humanconnectome.org/; fMRI data are 996 

in the subfolders rfMRI_REST1_RL, behavioral data are in the Restricted Data file). We 997 

utilized neural and behavioral data from one thousand eighty-six individuals (age 22–37 998 

years, mean age 28.8; 588 female and 498 male; 817=White, 63=Asian/Nat. 999 

Hawaiian/Othr Pacific Is., 158=Black or African Am., 2=Am. Indian/Alaskan Nat., 28=More 1000 

than one, 18=Unknown or Not Reported; 979=Not Hispanic/Latino, 94=Hispanic/Latino, 1001 

13=Unknown or Not Reported). 1002 

  1003 

fMRI Collection 1004 

We used the first resting state scan from the Human Connectome Project. The resting 1005 

state scan that we used in our analysis was 14 minutes 33 seconds long and was the first 1006 

functional scan done on participants' first day in the lab. The fMRI data were acquired 1007 

using a 3T Skyra scanner with 2 mm isotropic voxels and a TR of 0.72 s (Van Essen et 1008 

al.65 for more acquisition details). Each run comprised 1200 scan volumes, and there was 1009 
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a single run for each participant. We used minimally preprocessed voxelwise fMRI data. 1010 

See Glasser et al.76 for further details about data preprocessing. 1011 

 1012 

Residual Image Calculation 1013 

Consistent with our own data analysis pipeline and prior resting state research85, we also 1014 

calculated residual images for the Human Connectome Project long rest scan. Residual 1015 

images were calculated by modeling the canonical hemodynamic response function in a 1016 

general linear model. This model included nuisance regressors for the six motion 1017 

parameters (x, y, and z directions and roll, pitch, and yaw rotations), each motion 1018 

parameter’s derivative and square of the derivative, linear drift, and run constants. We 1019 

additionally regressed out TRs in nonsteady state and TRs that exhibited spikes of motion 1020 

found from global signal outliers and outliers derived from frame differencing (each 3 SDs). 1021 

Finally, we used a smoothing kernel of 6. All analyses of the Human Connectome Project 1022 

long rest scan were run on the residual images saved from those models. 1023 

  1024 

Linking Pre-self Pattern Instatement and Internalizing In the Human Connectome 1025 

Project Dataset 1026 

We performed an instatement analysis–a TR-to-TR pattern matching analysis–with the 1027 

pre-self pattern (e.g. the pattern generated by the MVPA Analysis) in the DMN core 1028 

subsystem. Each TR of the 14.5 minutes of rest was masked by the Yeo DMN core 1029 

subsystem ROI and then correlated with corresponding pre-self pattern. Next we 1030 

correlated each subjects internalizing score with their pre-self pattern instatement value 1031 

for each TR. Visual inspection revealed a rhythmic nature to the results of this analysis, 1032 

such that greater internalizing appeared to correspond with greater pre-self pattern 1033 

instatement around the first 150 TRs and rhythmically returned multiple times throughout 1034 

the resting state scan (Figure 6). To determine which participants–those with high or low 1035 

internalizing–were driving this periodic relationship, we decided to complete an inter-1036 

subject representational similarity analysis (IS-RSA41). Specifically we analyzed the 1037 

relationship between a subject’s internalizing score and the frequencies at which they 1038 

move in and out of the pre-self pattern.  1039 

  1040 

Inter-subject Representational Similarity Behavioral Model 1041 

To connect individual differences in internalizing to neural activity, we first converted 1042 

subjects’ internalizing scores into ranks, making low internalizing subjects ranked low and 1043 
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high internalizing subjects ranked high (range of ranks = 0-1085 for N=1086). Our Anna 1044 

Karenina model represented subject pair’s similarity of frequency vectors as the mean of 1045 

the pair’s internalizing rank. The higher the pair’s internalizing rank, the higher their 1046 

similarity in pre-self pattern instatement frequency (indicating more normative patterns of 1047 

movement into and out of the pre-self pattern), and vice-versa. This generated our 1048 

1086*1086 inter-subject mean internalizing matrix. See Fig. 7 for a depiction of the Anna 1049 

Karenina model. 1050 

  1051 

Inter-subject Representational Similarity Neural Model 1052 

For each Human Connectome participant, we first carried out an instatement analysis in 1053 

which we performed a TR-to-TR pattern matching analysis with our pre-self pattern–the 1054 

pattern generated by the multivoxel pattern analysis of the DMN core subsystem. Each 1055 

TR of the 14.5 minutes of rest was masked by the Yeo DMN core subsystem ROI and 1056 

then correlated with the DMN core subsystem pre-self pattern. This created a time course 1057 

for each subject where each data point indicated the extent to which the participant’s 1058 

neural activity matched our pre-self pattern at that particular time point. Next we performed 1059 

a fourier transformation on each subject’s instatement time course utilizing python’s 1060 

scipy.fft package92which generated a vector of 1200 frequencies’ magnitudes and angles 1061 

(a total of 2400 data points). We then performed IS-RSA, testing whether participants high 1062 

on internalizing showed a similar rhythmic structure to the presence of their pres-self 1063 

pattern during rest (i.e., an “Anna Karenina” model41).  1064 

  1065 

For our IS-RSA we wanted to include as many frequencies as made sense given the time 1066 

dynamics of fMRI and the hemodynamic response. We selected all of the frequencies 1067 

from the slowest frequency–with a period of the length of the whole 14.5 min rest period–1068 

to the frequency with a period of 4 seconds. This generated, for each participant, a vector 1069 

of sixty-nine frequencies’ magnitudes and angles (a total of 138 data points) (Fig 7). We 1070 

then Pearson correlated each subject’s frequency vector with each other to populate a 1071 

representational similarity matrix. This frequency similarity matrix was organized as a 1072 

function of participant’s  internalizing scores, so that participants higher on internalizing 1073 

appeared at the top and those lower on internalizing appeared on the bottom. 1074 

  1075 

Inter-Subject Representational Similarity Analysis (IS-RSA) with Mantel tests 1076 
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Finally, to test our hypothesized link between high internalizing and similar pre-self pattern 1077 

activity during rest, we first spearman correlated our inter-subject mean internalizing and 1078 

frequency similarity matrices (specifically, correlating only the lower triangles of these 1079 

symmetric matrices). We used spearman correlations, as is protocol in the 1080 

Representational Similarity Analysis literature93, because the increase in pre-self pattern 1081 

frequency similarity may not be linear to the increase in the internalizing of a subject-pair. 1082 

To test our model’s statistical significance, we need to account for each subject appearing 1083 

in the model multiple times—as we compare every subject to every other subject meaning 1084 

each subject appears N-1 (1086) times in our model. To account for this non-1085 

independence in our data, we tested our model with a non-parametric, Mantel permutation 1086 

test, as was done in previous works94,95. Specifically, we randomly shuffled subject’s 1087 

frequency vector identity—each subject’s (intact) frequency vector was relabeled with a 1088 

different subject’s identity—100,00 times, each time correlating the resulting simulated 1089 

frequency similarity matrix with our unshuffled mean internalizing matrix, creating a (null) 1090 

distribution of IS-RSA (correlation) values. We then quantified the probability that our 1091 

results were produced by chance by computing the proportion of times our simulated null 1092 

correlation value exceeded our observed model-data correlation. Finally, to determine 1093 

statistical significance we compared this probability to a significance threshold of alpha = 1094 

.05. 1095 
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